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Synopsis

There exist closed-form expressions, for the limiting eigenvalues of an infi-
nite k-periodic spatial lattice in any number of dimensions d. Additionally, there
are semi-analytical extensions available for eigenvalues of such lattices of any
given size n, which have free-free boundary conditions. These are based on the
eigenvalues of tridiagonal k-Toeplitz matrices (representing chains and d = 1),
and their tensor products or sums. The semi-analytical techniques for deter-
mining the eigenvalues of a lattice offer significant advantages over the direct
numerical methods. The computational cost of these methods is significantly
lower, with time complexity of O(n) compared to O(n2) for direct numerical
methods. Additionally, these methods provide higher accuracy for larger lat-
tice sizes approaching the limiting case (i.e., n > 100). Another benefit of the
semi-analytical approach is its numerical stability, which results from reduc-
ing the original eigenvalue problem of size nk to n eigenvalue problems each
of size k. This reduction makes it feasible to use parallel computation when
necessary. The accuracy of the semi-analytical method is compared to that of
direct numerical methods by using special examples with high-condition num-
bers. If analytical methods for determining eigenvalues are unavailable, periodic
boundary conditions are often used to reduce the size of numerical models that
represent large systems. While such models converge to the limiting eigenvalues,
closed-form solutions for these eigenvalues are highly useful. This highlights the
importance of the closed-form solution for limiting eigenvalues. In addition,
the fixed-fixed boundary conditions on a finite chain and their counterparts
for periodic spatial lattices in higher dimensions (d > 1) are addressed using
perturbations to tridiagonal k-Toeplitz matrices on their main diagonal. Semi-
analytical methods for these cases are proposed by applying numerical methods
only to update the few perturbed eigenvalues. An efficient extension is also
presented for evaluating eigenvectors in the case of real eigenvalues, which is
commonly required in physical systems.

1

Page 1 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only
Semi-analytical solution for

eigenvalue problems of lattice
models with boundary conditions

A Thesis submitted for the degree of

MTech Research
by

Athira Gopal

Department of Computational and Data Sciences

Indian Institute of Science

Under the supervision of

Prof. Murugesan Venkatapathi

Page 2 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

2

Page 3 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only
Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Dr. Murugesan
Venkatapthi, for his valuable guidance, unwavering support, and patience throughout my
research. His insightful comments and suggestions have greatly contributed to the quality
of this thesis. I also express my sincere thanks to my senior, Dr. M Hariprasad for his
input and constructive feedback.

I would like to thank my friends Prajaktha, Akansha, Suman, Sandeep, Raji, Sirsha,
Abhishek, Bhanu, and Anjali who made my life at IISC memorable. I thank my labmates
Naga, Lubhavan, Abhijeet, and Aakash for their support.

I extend my thanks to my parents and brother for their constant support and moti-
vation throughout my study. I also express my thanks to all my teachers who taught me
various subjects. I would like to thank all my friends who have been a constant source
of motivation and inspiration, and who have provided a supportive and collaborative
environment throughout my academic journey.

i

Page 4 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only
Abstract

Closed-form relations for limiting eigenvalues of an infinite k-periodic spatial lattice
in any number of dimensions d, and its semi-analytical extensions for any given size n
of the lattice with free-free boundary conditions, are known. These are based on the
eigenvalues of tridiagonal k-Toeplitz matrices (representing chains and d = 1), and their
tensor products or sums. These semi-analytical methods for eigenvalues incur drastically
lower computing costs than the direct numerical methods i.e. O(n) vs. O(n2) for the
latter, and further they are more accurate for sufficiently large lattices approaching the
limiting case (n > 100). This advantage in computing cost, accuracy, and numerical
stability emerges as the original eigenvalue problem of nk in size is reduced to n eigen-
value problems each k in size, further making this approach very amenable to parallel
computation when required. In this work, their errors in eigenvalues are compared with
the errors of the direct numerical methods using special examples with high condition
numbers. Secondly, in the absence of such analytical methods, one also resorts to periodic
boundary conditions to limit the size of the numerical model representing a very large
system. The convergence of numerical models with periodic boundary conditions to the
limiting eigenvalues is highlighted, to emphasize the utility of the closed-form solution for
the limiting eigenvalues. Thirdly, the fixed-fixed boundary conditions on a finite chain
and their counterpart for periodic spatial lattices in higher dimensions (d > 1) are ad-
dressed using perturbations to tridiagonal k-Toeplitz matrices representing the first and
last elements of the chain. Extensions of the semi-analytical methods for these cases by
applying numerical methods only to update the few perturbed eigenvalues are proposed.
An efficient extension for evaluating the eigenvectors in the case of real eigenvalues as
required in most physical systems is also presented.
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Notations

Mk : k-toeplitz tridiagonal matrix
λ : Eigenvalue
I : Identity matrix
γ : Negative of the determinant of the k-toeplitz tridiagonal matrix
Afree−free : Adjacency matrix of the free-free lattice
Aperiodic : Adjacency matrix lattice under periodic boundary condition
Afixed : Adjacency matrix lattice under fixed boundary condition
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Chapter 1

Introduction: Methods for
Eigenvalue Problems

Chapter-outline

Numerical methods for the solution of eigenvalue problems are introduced, and we conclude
with an outline of the thesis.

1.1 Summary of Numerical Methods for Eigenvalue
Problems

An eigenvalue problem can be written as

Ax = λx (1.1)

Here A is a square matrix, A ∈ Cm×m, λ ∈ C and x ∈ Cm. λ is one of the eigenvalue of
A and x is the eigenvector of A corresponding to the eigenvalue λ.

The characteristic polynomial of a square matrix can be defined as

det(A− λI) = 0 (1.2)

λ, the eigenvalues of the square matrix A, are given by the solutions of the characteristic
polynomial. Since the polynomial root-finding problem is ill-conditioned, we can’t find
eigenvalues using the polynomial root-finding approach. So any eigenvalue solver must
be iterative.

1

Page 10 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

CHAPTER 1. INTRODUCTION: METHODS FOR EIGENVALUE PROBLEMS 2

Theorem[1]: For any m ≥ 5, there is a polynomial p(z) of degree m with rational
coefficients that has real root p(r) = 0 with the property that r can’t be written using any
expression involving rational numbers, addition, subtraction, multiplication, division, and
kth roots.

There are different types of eigenvalue algorithms. The power iteration algorithm finds
the largest eigenvalue of the matrix and is only applicable to real symmetric matrices.
Both inverse iteration and rayleigh quotient iteration work based on the initial guess
and that eigenvalue will be found which is closest to the initial guess. Whereas the QR
algorithm and simultaneous iteration give the eigenspectra of the square matrix.

1.1.1 Power methods (Power Iteration, Inverse Power, and Rayleigh
Quotient Iterations)

Power Iteration Algorithm

The power Iteration [2] algorithm gives the largest eigenvalue of the matrix and the
corresponding eigenvector. Power Iteration is limited to real symmetric matrices.

Algorithm 1 Power Iteration Algorithm
Require: Some vector v(0) with||v(0)|| =1

for k = 1, 2... do
w ← Av(k−1)

v(k) ← w/||w||
λ(k) ← (v(k))TAv(k)

end for

Convergence Relation for Power Iteration [1]

The initial eigenvector, v(0) be the linear combination of the orthonormal eigenvectors
qi.

v(0) = a1q1 + a2q2 + ....+ amqm (1.3)

v(k) is the multiple of Av(0), So we can write,

v(k) = ckA
kv(0)

= ck(a1λ
k
1q1 + a2λ

k
2q2 + ....+ amλ

k
mqm)

= ckλ
k
1(a1q1 + a2(λ2/λ1)kq2 + ....+ am(λm/λ1)kqm)

(1.4)

From the above equation, we reach the following conclusion[1].

Suppose |λ1| > |λ2| ≥ ...... ≥ |λm| ≥ 0 and qT
1 v

(0) ̸= 0. Then Power Iteration
algorithm satisfies the following relation
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CHAPTER 1. INTRODUCTION: METHODS FOR EIGENVALUE PROBLEMS 3

||v(k) −±q1|| = O(
∣∣∣∣∣λ2

λ1

∣∣∣∣∣
k

) (1.5)

|λ(k) − λ1| = O(
∣∣∣∣∣λ2

λ1

∣∣∣∣∣
2k

) (1.6)

When |λ2| is closer to |λ1|, the convergence of the power iteration is slow and when
|λ1| >> |λ2|, power iteration converge very fast.

Inverse Iteration with Shift

In inverse iteration [3], an initial guess for the eigenvalue is given and that eigenvalue
will be found which is closest to the initial guess. This algorithm is only applicable to
real symmetric matrices.

Algorithm 2 Inverse Iteration Algorithm
Require: Some vector v(0) with||v(0)|| =1

for k = 1, 2... do
solve (A− µI)w = v(k−1) for w
v(k) ← w/||w||
λ(k) ← (v(k))TAv(k)

end for

λ(k) and v(k) are the eigenvalue and eigenvector calculated using inverse iteration.

Convergence Relation for Inverse Iteration
The initial eigenvector, v(0) be the linear combination of the orthonormal eigenvectors qi.

v(0) = a1q1 + a2q2 + ....+ amqm (1.7)

v(k) is the multiple of (A− µI)v(0), So we can write,

v(k) = ck(A− µI)kv(0)

= ck[a1(λ1 − µ)kq1 + a2(λ2 − µ)kq2 + ....+ am(λm − µ)kqm]

= ck(λ1 − µ)k[a1q1 + a2
(λ2 − µ)k

(λ1 − µ)k
q2 + ....+ am

(λm − µ)k

(λ1 − µ)k
qm]

(1.8)

From the above equation, we reach the following conclusion.

Suppose λJ is the closest eigenvalue to µ and λK is the second closest, that is |µ−λJ | <
|µ − λK | ≤ |µ − λj| for each j ̸= J . Suppose qJ

Tv(0) ̸= 0, then Inverse Iteration satisfy
the following relation [1].
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||v(k) −±q1|| = O(
∣∣∣∣∣ µ− λJ

µ− λK

∣∣∣∣∣
k

) (1.9)

|λ(k) − λJ | = O(
∣∣∣∣∣ µ− λJ

µ− λK

∣∣∣∣∣
2k

) (1.10)

Rayleigh Quotient Iteration

Rayleigh Quotient, r(x) of a vector x is defined (with respect to A) by the given below
equation [4].

r(x) = xTAx

xTx
(1.11)

Rayleigh Quotient algorithm [5] extends the idea of inverse iteration by using the
Rayleigh Quotient and is limited to real symmetric matrices.

Algorithm 3 Rayleigh Quotient Algorithm
Require: Some vector v(0) with ||v(0)|| = 1 and λ(0) = v(0)T

Av(0) = corresponding
Rayleigh Quotient.
for k = 1, 2... do

solve (A− λ(k−1)I)w = v(k−1) for w
v(k) ← w/||w||
λ(k) ← (v(k))TAv(k)

end for

Convergence Relation for Rayleigh Quotient Iteration

The convergence equation of the Rayleigh Quotient algorithm is given below [1].

||v(k+1) −±qJ || = O(||v(k) −±qJ ||3) (1.12)

|λ(k+1) − λJ | = O(|λ(k) − λJ |3) (1.13)

1.1.2 QR Algorithm

QR algorithm [6] gives the eigenspectra of the square matrix, A. It combines both the
power method, the Rayleigh quotient iteration, and the QR factorization [7].

Unshifted QR Algorithm

This algorithm [8] converges to upper triangular if A is arbitrary, and diagonal if A
is hermitian.

Output: Upper triangular R having the same eigenvalues of A.
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Algorithm 4 Unshifted QR Algorithm
for k = 1, 2... do

A(0) ← A
A(k−1) ← Q(k)R(k)

A(k) ← R(k)Q(k)

Q(k) ← Q(1)Q(2)....Q(k)

R(k) ← R(k)R(k−1)....R(1)

end for

The eigenvalues of matrix A are diagonal elements of matrix R.

Convergence Relation for Unshifted QR Algorithm [1]

Let the QR algorithm be applied to a real symmetric matrix A whose eigenvalues
satisfy λ1 > λ2 > .... > λn and whose corresponding eigenvector matrix Q has all non-
singular leading principal minors. Then as k →∞, A(k) converges linearly with constant
maxk|λk+1|/|λk| to diag(λ1, ...λn), and Q(k) converges at the same rate to Q.

|a(k)
j,j − λj| = O(C(k)) (1.14)

|q(k)
j −±qj| = O(C(k)) (1.15)

For each j with 1 ≤ j ≤ n, where C < 1 is the constant maxk|λk+1|/|λk|.

Practical QR Algorithm

The convergence of the unshifted QR algorithm can be painfully slow. So we need
shifted QR algorithm[9].

Output: Upper triangular R having the eigenvalues of A.

Algorithm 5 Practical QR Algorithm
Require: A(0). ▷ (Q(0))TA(0)Q(0) = A, A(0) is a tridiagonalization of A

for k = 1, 2... do
Pick a shift µk ▷ e.g: choose µk = Ak−1

m,m

Q(k)R(k) ← A(k−1) − µkI
A(k−1) ← Q(k)R(k) ▷ QR factorization of A(k−1) − µkI
A(k) = R(k)Q(k) + µkI ▷ Recombine factors in reverse order

If any off-diagonal Aj,j+1 close to zero: set Aj,j+1 = Aj+1,j = 0, A =
[
A1 0
0 A2

]
R(k) ← R(k)R(k−1)....R(1)

end for
Apply the QR algorithm on A1 and A2.

Since the eigenvalues of the upper triangular matrix are its diagonal entries, the
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eigenvalues of matrix A are diagonal entries of R. The shifted QR algorithm converges
in cubic rate [10].

1.1.3 Simultaneous Iteration

Simultaneous Iteration [11] is a generalized version of the power method. This method
finds an invariant subspace corresponding to the first few dominant eigenvalues.

Output: orthogonal Q spanning the eigenspace of A.

Algorithm 6 Simultaneous Iteration Algorithm
Require: Pick Q(0) ∈ Rm×n with orthonormal columns

for k = 1, 2... do
Z ← AQ(k−1)

Q(k)R(k) ← Z ▷ Reduced QR factorization of Z
end for

Like the unshifted QR algorithm, simultaneous iteration also converges at a linear
rate [12].

1.2 Outline of the Thesis

In chapter-2, the earlier work on the limiting sets of eigenvalues of the tridiagonal k-
Toeplitz matrices and their approximations for the finite size of the matrix are discussed.

In chapter-3, the relevant boundary conditions of lattices, and the corresponding
perturbations required in the entries of the tridiagonal k-Toeplitz matrix are explained.
A specific example of tight-binding models used in physical sciences is presented for
motivation.

In chapter-4, the direct numerical methods and the above semi-analytical solutions
are compared to highlight that the latter is not only more efficient but also more accurate
for the tridiagonal k-Toeplitz matrices (i.e. a chain with free-free boundary).

In chapter-5, the closed-form expressions for the characteristic polynomials, of a per-
turbed tridiagonal k-Toeplitz matrix are derived, for different boundary conditions i.e.
entries of the first two rows and the last two rows may have to be perturbed representing
the boundary condition on the chain. We show that a general solution for the roots of
these characteristic polynomials is intractable, unlike the free-free chain in the previous
chapter. Hence we suggest a few methods for identifying and updating only the perturbed
eigenvalues of the free-free chain due to the boundary conditions applied. In the case of
a lattice, the corresponding perturbations apply to all the chains required to construct
the lattice.
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In chapter-6, the numerical results of these approaches, and also the convergence of
periodic boundary conditions typically used in numerical models, to the limiting eigen-
values are presented. These highlight the utility of the semi-analytical methods proposed.

Page 16 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only
Chapter 2

Introduction to Semi-Analytical
Solution for Eigenvalues of
Tridiagonal k-Toeplitz Matrices

Chapter-outline

The earlier work on the limiting sets of eigenvalues of the tridiagonal k-Toeplitz matrices,
and its approximations for a finite size of the matrix are presented.

Tridiagonal k-Toeplitz matrices are special tridiagonal matrices whose tridiagonal
elements in the first k rows repeat after k rows [13]. They are of the form

Mk =



a1 x1 0 0 0 0 0 0 0
y1 a2 x2 0 0 0 0 0 0
0 y2 . . . . . . 0 0 0 0 0
0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0
0 0 0 0 y1

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 yk−2 ak−1 xk−1

0 0 0 0 0 0 0 yk−1 ak



(2.1)

With periodicity constraint Mk(i, i) = a(imodk) , Mk(i, i+ 1) = x(imodk) and Mk(i+ 1, i) =
y(imodk). Here xj,yj, and aj are complex numbers. Since polynomial root finding is an
ill-conditioned problem, any eigenvalue solver must be iterative. The computational cost

8
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of finding eigenvalues of a matrix by built-in Python or Matlab functions is o((nk)2),
where nk is the size of the matrix. Here k is the period and n is the number of blocks of
the k-Toeplitz tridiagonal matrix.

In this section, we present a less computationally costly method [14] compared to
builtin iterative methods [15], to find the eigenvalues of the k-Toeplitz tridiagonal matrix.

2.1 Characteristic Polynomial of Tridiagonal k-Toeplitz
Matrix and Three-Term Recurrence Relation

Our objective in this section is to get a three-term recurrence relation of the characteristic
polynomial of the matrix Mk of dimension nk×nk, in terms of characteristic polynomials
of matrices of dimensions (n− 1)k × (n− 1)k and (n− 2)k × (n− 2)k.

Characteristic equation of matrix Mk can be written as |Mk−λI| = 0 and let −λ = z,
then

Mk − λI =



z + a1 x1 0 0 0
y1 z + a2 x2 0 0
0 y2 z + a3 x3 0
0 0 y3 . . . . . .

0 0 0 . . . . . .


(2.2)

Let pn(z) denote the characteristic polynomial of the matrix Mk of dimension nk ×
nk(n = 1, 2, · · · ) and qn(z) be the characteristic polynomial of the first principal sub-
matrix of Mk eliminating first row and first column, which is of dimension (nk − 1) ×
(nk−1). Similarly, let rn(z) be the characteristic polynomial of the second principal sub-
matrix obtained by eliminating the first two rows and first two columns, and xjyj = uj.
Then we have,

pn(z) = (z + a1)qn(z)− u1rn(z) (2.3)

In the matrix form, we have,pn(z)
qn(z)

 =
z + a1 −u1

1 0

 qn(z)
rn(z)

 , (2.4)
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pn(z)
qn(z)

 =
z + a1 −u1

1 0

 z + a2 −u2

1 0

 . . .
z + ak −uk

1 0

 pn−1(z)
qn−1(z)

 (2.5)

With the initial condition,p1(z)
q1(z)

 =
z + a1 −u1

1 0

 z + a2 −u2

1 0

 . . .
z + ak−1 −uk−1

1 0

 z + ak

1

 (2.6)

Note that when k = 1, q(z) and r(z) will reduce to pn−1(z) and pn−2(z) without any
loss of generality of the above. Similarly r(z) will reduce to pn−1(z) in the case of k = 2.
Let us denote,

U(i) =
z + ai −ui

1 0

 (2.7)

Also let Uk =
k∏

i=1
U(i). Entries of Uk are polynomials in z, and for generality, we can

denote them as,

Uk =
A(z) B(z)
C(z) D(z)

 , (2.8)

pn(z)
qn(z)

 =
A(z) B(z)
C(z) D(z)

 pn−1(z)
qn−1(z)

 . (2.9)

where A(z), B(z), C(z) and D(z) are some polynomials of degree at most k.
From 2.6, we can derive Proposition 1, which is given below.

Proposition 1 : The characteristic polynomial of a tridiagonal k-Toeplitz matrix pn

satisfies the following recurrence relation, where k is the period and nk is the dimension
of the matrix,

pn+1(z) = Qk(z)pn(z) + γpn−1(z) (2.10)

Here Qk = A(z) +D(z) is a polynomial of degree k, and γ = −
k∏

i=1
ui
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pn+1(z) = trace(Uk)pn(z)− det(Uk)pn−1(z) (2.11)

We have trace(Uk) = A(z) + D(z) and det(Uk) =
k∏

i=1
ui. This proves the proposition

with Qk(z) = trace(Uk) and γ = −det(Uk).

2.1.1 Existence of a Limiting Set and the Nature of Conver-
gence of Roots

Let ζ = p1(z)−Qk(z)√
γ

. Then we can write,

λ = −Qk(z)
√
γ

(2.12)

where λ is the eigenvalue of the n× n matrix given below.



ζ −1 0 0 . . . 0
1 0 −1 0 . . . 0
0 1 0 −1 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . 0 . . . 0 0


n×n

(2.13)

Let Ln(ζ, λ) be the characteristic polynomial for the above matrix and Tn(λ) be the
characteristic polynomial for a skew-symmetric matrix given below,



0 −1 0 0 0 . . . 0
1 0 −1 0 0 . . . 0
0 1 0 −1 0 . . . 0
0 . . .

. . . ... . . . . . . . . .

0 0 . . . 0 1 0 −1
0 0 0 . . . 0 1 0


n×n

(2.14)

Using the above equations, We get

Ln(ζ, λ) = ζTn + Tn−1 (2.15)

When Ln(ζ, λ) = 0,
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t2n+2
+ + ζt2n+1

+ + (−1)n+1[ζt+ − 1] = 0 (2.16)

where t+ = −λ+
√

λ2+4
2

By applying Rouche’s theorem on 2.16, we will get except two, all the other limiting
zeros of Ln(ζ, λ) converge to the unit circle. So this represents among the solutions of
Ln(ζ, λ), up to a maximum of 2k points that may lie outside the continuous curves.

Theorem: The limiting roots of polynomials in the three-term recurrence relation
pn+1(z) = Qk(z)pn(z) + γpn−1(z) with z, γ in C, is a subset of [z : Qk(z) = 2i√γsinθ] ∪
[z : Qk(z) = γ

p(z) − p(z)] , where p(z) = p1(z)−Qk(z).

2.1.2 Chebyshev Approximation

We can approximate zeros of Ln(ζ, λ) by the roots of Tn for finite large n. As the roots of
Tn are distributed on the imaginary line just as the real roots of Chebyshev polynomials
of the second kind, we call this Chebyshev approximation. The nk roots are the solution
of z in the following equation, where λi with i = 1, 2...n are the roots of Tn.

Qk(z) = −√γλi (2.17)

Our nk eigenvalue problem can be converted into n number of k eigenvalue problem
as in equation 2.17.

The computational complexity for the eigenvalue computation by this method is
O(nk2).

2.1.3 Chebyshev-Taylor Approximation

Applying Taylor series approximation to 2.15 ,

Qk(z′) = −√γλiT
′
n(λi) + ζλjT

′
n−1(λj)

T ′
n(λi) + ζT

′
n−1(λj)

(2.18)

Let λi and λj be the roots of Tn and Tn−1 respectively that are closest to each other.
Given Tn(λi) = Tn−1(λj) = 0, T ′

n(λi) and T ′
n−1(λj) are the first order derivative of Tn and

Tn−1 at λi and λj respectively.
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λ = λiT
′
n(λi) + ζλjT

′
n−1(λj)

T ′
n(λi) + ζT

′
n−1(λj)

(2.19)

This approximation is denoted as the Chebyshev-Taylor approximation. The compu-
tational cost to find the eigenvalues of the k-Toeplitz tridiagonal matrix by this approxi-
mation is O(nk3).
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Chapter 3

Boundary Conditions on Lattices,
and Applications

Chapter-outline

The relevant boundary conditions of lattices, and the corresponding perturbations required
in the entries of the tridiagonal k-Toeplitz matrix are explained. A specific example of
tight-binding models used in physical sciences is presented for motivation.

Adjacency matrices of atomic chains [16] in which only nearest neighbor interactions
are present and all other interactions are negligible can be represented by the tridiagonal
k-toeplitz matrices and their perturbations. In this section, we are going to introduce
free-free boundary conditions, fixed-fixed boundary conditions, and periodic boundary
conditions and discuss the applications of each of them.

3.0.1 Free-Free Boundary Condition

The free-free boundary condition is the same as the case where there is no boundary
condition. So, in free-free boundary conditions, the adjacency matrix of the chain can
be represented by a tridiagonal k-Toeplitz matrix [16]. The eigenvalues of the chain with
free-free boundary conditions can be calculated using Chebyshev or Chebyshev-Taylor

14
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k-toeplitz ma-
trix without any

boundary condition

γ = 0?
Analytical Ex-
pression for Re-

currence Relation

Existence of
exact solution

Analytical
Expression for

Recurrence
Relation is known

Existence of
limiting set

finite n approx-
imation to the

limiting set

Chebyshev and
Chebyshev-Taylor
approximations

Yes

No

Figure 3.1: The above flowchart illustrates the methods used for eigenvalue computation of
tridiagonal k-Toeplitz matrices.
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approximations.

Afree−free =



a1 x1 0 0 0 0 0 0 0
y1 a2 x2 0 0 0 0 0 0
0 y2 . . . . . . 0 0 0 0 0
0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0
0 0 0 0 y1

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 yk−2 ak−1 xk−1

0 0 0 0 0 0 0 yk−1 ak



(3.1)

Figure 3.2: One-dimensional free-free mono-atomic lattice,(ak = a1,∀k, xk = x1, ∀k, and yk =
xk,∀k.)

Figure 3.3: One-dimensional free-free Di-atomic lattice, (ak = a2, ∀ odd k, ak = a3, ∀ even k,
xk = x2, ∀ odd k, xk = x3, ∀ even k, and yk = xk, ∀k.)
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Figure 3.4: Two-dimensional lattice with free-free boundary condition (This lattice is the Kro-
necker sum of mono-atomic chain with free-free boundary condition in x direction(Figure 3.2)
and di-atomic chain with free-free boundary condition in y direction(Figure 3.3))

3.0.2 Fixed Boundary Condition

In the case of fixed boundary conditions [17], the two ends of the atomic chain can be
perturbed. So for fixed boundary conditions, the adjacency matrix is the tridiagonal
k-Toeplitz matrix with perturbation in (1, 1) and (N,N) entries.

Afixed =



ã2 x1 0 0 0 0 0 0 0
y1 a2 x2 0 0 0 0 0 0
0 y2 . . . . . . 0 0 0 0 0
0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0
0 0 0 0 y1

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 yk−2 ak−1 xk−1

0 0 0 0 0 0 0 yk−1 ã3



(3.2)

Here ã2 and ã3 are the perturbations in the chain.
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Figure 3.5: One-dimensional di-atomic lattice with fixed boundary condition,ak = a2,∀ odd k
except the boundary, ak = a3, ∀ even k except the boundary, xk = x2,∀ odd k, xk = x3,∀ even
k, and yk = xk,∀k. ã2 and ã3 represent the perturbation in the chain.

Figure 3.6: One-dimensional mono-atomic lattice with free-free boundary condition (ak =
a1,∀k, xk = x1, ∀k, and yk = xk, ∀k.)

Pictorial representation of the 2D lattice which is formed by 3.6 and 3.5 is given below.

Figure 3.7: Two dimensional lattice with fixed boundary condition (This lattice is the Kronecker
sum of di-atomic chain with fixed boundary condition in y direction (Figure 3.5) and mono-
atomic chain with free-free boundary condition in x direction (Figure 3.6))
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3.0.3 Periodic Boundary Condition

By imposing the periodic boundary condition [17] on a system, we can approximate a
large system using a small part of it. Periodic boundary conditions are also called cyclic
boundary conditions [18]. The adjacency matrix of a chain with only nearest neighbor
interaction under periodic boundary conditions is formed by replacing (1, N) and (N, 1)
zero entries with non-zero entries of tridiagonal k-Toeplitz matrix. Here N × N is the
size of the adjacency matrix.

Aperiodic =



a1 x1 0 0 0 0 0 0 yk

y1 a2 x2 0 0 0 0 0 0
0 y2 . . . . . . 0 0 0 0 0
0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0
0 0 0 0 y1

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 yk−2 ak−1 xk−1

xk 0 0 0 0 0 0 yk−1 ak



(3.3)

Figure 3.8: One-dimensional di-atomic lattice with periodic boundary condition (ak = a1,∀ odd
k, ak = a2,∀ even k, xk = x1,∀ odd k, xk = x2,∀ even k, and yk = xk,∀k.)

3.0.4 Lattices with Dimension ≥ 2

Adjacency matrices of the multi-dimensional lattices are the Kronecker sum of the adja-
cency matrices of the corresponding one-dimensional chains [19]. The adjacency matrix
of a 2D lattice can be represented as,

L2D = Lxx ⊕ Lyy = Lxx ⊗ Iy + Ix ⊗ Lyy (3.4)
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CHAPTER 3. BOUNDARY CONDITIONS ON LATTICES, AND APPLICATIONS20

Similarly, the adjacency matrix of a 3D lattice can be represented as

L3D = Lxx ⊕ Lyy ⊕ Lzz = Lxx ⊗ Iy ⊗ Iz + Ix ⊗ Lyy ⊗ Iz + Ix ⊗ Iy ⊗ Lzz (3.5)

where Lxx, Lyy and Lzz are adjacency matrices of individual chains. Ix, Iy and Iz are
the identity matrices of x, y and z directional chains respectively.

In this manner, we can form all other higher dimensional lattices using the adjacency
matrices of chains in each direction. The eigenvalues of such lattice models [20] are the
pairwise sum of the individual one-dimensional chain eigenvalues.

3.0.5 Example Application: Tight-Binding Model

The applications of tridiagonal k-Toeplitz matrices under different boundary conditions
include the vibrational frequency of atomic lattice [21], the chain model in quantum
mechanics [22] and the periodic tight-binding model. Here we will discuss the periodic
tight-binding model in detail.

The tight-binding model is a quantum mechanical model which studies the elec-
tronic properties of solids. Here, we focus on the periodic tight binding lattice with
a single orbital per site and the nearest-neighbor hopping [23]. Hamiltonian of such a
one-dimensional periodic tight-binding model with different boundary conditions can be
represented as tridiagonal k-Toeplitz matrices and their perturbations.

The tight binding system of equations for a 1D lattice composed of N sites with a
single orbital per site and nearest-neighbor hopping is given below[24].

Eψ = ϵnψn + tn,n−1ψn−1 + tn,n+1ψn+1 (3.6)

∀n = 1, 2, .....N.

In the above equation, E is the energy of the lattice, and ϵn is the onsite energy of
lattice site n. ψn is the wave function of lattice site n and tn,n−1 is the hopping term
interaction between n and n − 1 lattice sites. With free-free boundary conditions, the
Hamiltonian matrix of the periodic tight binding chain with only the nearest neighbor
interaction is tridiagonal k-toeplitz [25].
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Hfree−free =



ϵ1 t12 0 0 0 0 0 0 0
t12 ϵ2 t23 0 0 0 0 0 0
0 t23

. . . . . . 0 0 0 0 0
0 0 . . . ϵk tk1 0 0 0 0
0 0 0 tk1 ϵ1 t12 0 0 0
0 0 0 0 t12

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 tk−2,k−1 ϵk−1 tk−1,k

0 0 0 0 0 0 0 tk−1,k ϵk



(3.7)

Here {ϵ1,ϵ2,.....,ϵk} and {t12,t23,.....,tk−2,k−1,tk−1,k} represents onsite energies and near-
est neighbor hopping terms respectively.

For fixed boundary conditions, the Hamiltonian of the tight binding one-dimensional
lattice with only nearest neighbor interaction is a tridiagonal k-Toeplitz matrix with
perturbation in (1, 1) and (N,N) entries.

Hfixed =



a t12 0 0 0 0 0 0 0
t12 ϵ2 t23 0 0 0 0 0 0
0 t23

. . . . . . 0 0 0 0 0
0 0 . . . ϵk tk1 0 0 0 0
0 0 0 tk1 ϵ1 t12 0 0 0
0 0 0 0 t12

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 tk−2,k−1 ϵk−1 tk−1,k

0 0 0 0 0 0 0 tk−1,k b



(3.8)

Here a and b are the onsite energies of lattice sites at the two ends of the finite lattice.

Under periodic boundary conditions, the Hamiltonian matrix for the tight binding
one-dimensional lattice with only nearest neighbor interactions is a tridiagonal k-Toeplitz
matrix with (1, N) and (N, 1) non-zero entries [26].

To find the energy of the tight-binding model, we have to calculate the eigenvalues of
the corresponding Hamiltonian matrix [27]. Since the Hamiltonian of a one-dimensional
tight-binding model with only the nearest neighbor interaction is the tridiagonal k-
Toeplitz matrix, the energy eigenvalues can be calculated using Chebyshev or Chebyshev
Taylor approximations. For systems under fixed perturbation and periodic perturbation,
we have to develop methods to find eigenvalues with less computational cost.
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Hperiodic =



ϵ1 t12 0 0 0 0 0 0 tk1

t12 ϵ2 t23 0 0 0 0 0 0
0 t23

. . . . . . 0 0 0 0 0
0 0 . . . ϵk tk1 0 0 0 0
0 0 0 tk1 ϵ1 t12 0 0 0
0 0 0 0 t12

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 tk−2,k−1 ϵk−1 tk−1,k

tk1 0 0 0 0 0 0 tk−1,k ϵk



(3.9)
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Chapter 4

Error Analysis of the Eigenvalues
and Eigenvectors of Free-Free Chain

Chapter-outline

Using special cases of tridiagonal k-Toeplitz matrices where closed-form expressions for
the eigenvalues are tractable, we compare the results of the semi-analytical method and
the direct numerical method for matrices of finite size.

In this chapter, we will perform the error analysis of the eigenvalue calculation meth-
ods of the unperturbed tridiagonal k-toeplitz matrix, Chebyshev, and Chebyshev Taylor
approximations. We will also develop an algorithm to find the eigenvectors of the k-
Toeplitz tridiagonal matrices.

4.1 Error Analysis of Eigenvalues Using Special Ma-
trices

To perform the error analysis of eigenvalues, we need to know the exact eigenvalues of
the tridiagonal k-Toeplitz matrices. Eigenvalues of tridiagonal k-Toeplitz matrices show
a repeated pattern when γ = 0. So it is possible to find out the exact eigenvalues of high
dimensional tridiagonal k-Toeplitz matrices with γ = 0 manually. These non-symmetric
matrices can have high condition numbers and they are used to illustrate the potential
failure of the direct numerical methods.

23
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4.1.1 Chebyshev Approximation

Error analysis of Chebyshev approximated eigenvalues is done by comparing the average
relative error of Chebyshev approximated eigenvalues with that of the direct numerical
method eigenvalues.

Figure 4.1: Error analysis of Chebyshev approximated vs the direct numerical method eigen-
values: diagonal=[0,0,0], upper diagonal=[0,0,-1], lower diagonal=[1,1,1]. Since the average
relative error of eigenvalues of the direct numerical method is around 0.2 when the size of the
matrix is greater than 100k, the direct numerical method can’t be considered a stable comput-
ing method. The eigenvalues of this matrix are n + 2 number of zeros, n− 1 number of 1j, and
n− 1 number of −1j where k = 3 is the period of chain and nk × nk is the size of the matrix.
C →∞, where C is the condition number of the matrix.
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Figure 4.2: Error analysis of Chebyshev approximated vs the direct numerical method eigen-
values: diagonal=[0,0,0], upper diagonal=[0,0,1], lower diagonal=[-1,-1,-1]. Since the average
relative error of eigenvalues of the direct numerical method is around 0.5 when the size of the
matrix is greater than 100k, the direct numerical method can’t be considered a reliable com-
puting method. The eigenvalues of this matrix are n + 2 number of zeros, n− 1 number of 1j,
and n − 1 number of −1j where k = 3 is the period of chain and nk × nk is the size of the
matrix. C →∞, where C is the condition number of the matrix.

Figure 4.3: Error analysis of Chebyshev approximated vs the direct numerical method eigen-
values: diagonal=[0,0,0], upper diagonal=[0,0,1], lower diagonal=[-1,0,-1]. Since the average
relative error of the direct numerical method is zero, here the direct numerical method is a
reliable computation method. The eigenvalues of this matrix are n + 2 number of zeros, n− 1
number of 1j, and n− 1 number of −1j where k = 3 is the period of chain and nk × nk is the
size of the matrix. C →∞, where C is the condition number of the matrix.

The eigenvalue calculation of the above-used matrices is given in the appendix section.

From the above figures, we can observe that for tridiagonal k-Toeplitz matrices,
Chebyshev approximated eigenvalues are more accurate compared to the direct numerical
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method eigenvalues. When the number of chains increases, the average relative error of
the Chebyshev approximated eigenvalues always decrease or remains the same. We can
confirm this with more examples that are included in the appendix section of this report.

4.1.2 Chebyshev-Taylor Approximation

The Chebyshev-Taylor approximation for the eigenvalues of tridiagonal k-Toeplitz ma-
trices is not defined when γ = 0. It is not possible to obtain the exact eigenvalues of a
high dimensional tridiagonal k-Toeplitz matrix with non-zero γ manually. So we don’t
perform a similar error analysis for Chebyshev-Taylor approximated eigenvalues.

4.2 Eigenvector Calculation for k-Toeplitz Tridiago-
nal Matrices

In this section, we propose a method to find the eigenvalues and eigenvectors of tridi-
agonal k-Toeplitz matrices. With the Chebyshev approximated eigenvalues, eigenvectors
can be found using the Inverse Iteration and the Thomas algorithm. While we use In-
verse Iteration, Chebyshev approximated eigenvalues are taken as the initial guess. The
Thomas algorithm is used to solve the tridiagonal system as required in Inverse iteration.
The code to find eigenvalues and eigenvectors of tridiagonal k-Toeplitz matrices is freely
available on GitHub (Github link for my codes: Github link ).

4.2.1 Thomas Algorithm

Thomas Algorithm [28] is the simplified form of Gaussian elimination and it is used to
solve tridiagonal systems. A tridiagonal system of n unknowns can be written as the
equation given below.



b1 c1 . . . . . . 0 0
a2 b2 c2 . . . 0 0
0 a3 b3 c3 . . . 0
0 ... . . . . . . . . . 0
0 . . .

... an−1 bn−1 cn−1

0 0 . . .
... an bn





x1

x2
...
...

xn−1

xn


=



d1

d2
...
...

dn−1

dn


(4.1)

To solve systems like the above, we can use the Thomas algorithm with the compu-
tational cost of O(n).
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Algorithm 7 Thomas Algorithm
for i = 1, 2...n do

w ← ai/bi−1
bi ← bi − w × ci−1
di ← di − w × di−1

end for
followed by back substitution
for i = n− 1, n− 2, ....1 do

xn ← dn/bn

xi ← di−ci×xi+1
bi

end for

As the output of Inverse Iteration, we can also get eigenvalues. The limitations of
the Inverse Iteration algorithm [29] in further improving the eigenvalues given by the
Chebyshev approximation of the limiting set, are given below.

Limitations of Inverse Iteration in Improving the Chebyshev Approxima-
tion

• The Inverse Iteration cannot be used for matrices with complex eigenvalues.

• Modified eigenvalue due to Inverse Iteration, need not be as accurate as the orig-
inal Chebyshev approximated eigenvalue, due to numerical degradation and high
condition numbers of the large eigenvalue problem.

4.2.2 Error Analysis of Eigenvalues Obtained after Inverse It-
eration

The following figures, do a comparative study of errors of Chebyshev approximated eigen-
values, modified Chebyshev approximated eigenvalues (eigenvalues as the result of Inverse
Iteration), and built-in eigenvalues.

Page 36 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

CHAPTER 4. ERROR ANALYSIS OF THE EIGENVALUES AND EIGENVECTORS OF FREE-FREE CHAIN28

Figure 4.4: Error analysis of eigenvalues: diagonal= [0, 0, 0], upper diagonal= [0, 0, 1], lower
diagonal= [1, 0, 1]. Since the average relative error of improved Chebyshev is 0.2, it is not a
reliable computation method. The eigenvalues of this matrix are n + 2 number of zeros, n− 1
number of 1, and n− 1 number of −1 where k = 3 is the period of chain and nk×nk is the size
of the matrix. C →∞, where C is the condition number of the matrix.

Figure 4.5: Error analysis of eigenvalues: diagonal= [0, 0, 0], upper diagonal= [0, 0, 1], lower
diagonal = [1, 1, 0]. Since the average relative error of improved Chebyshev is 0.02 only, it is a
stable computation method here. The eigenvalues of this matrix are 3n number of zeros, where
k = 3 is the period of chain and nk × nk is the size of the matrix. C →∞, where C is the
condition number of the matrix.

Page 37 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

CHAPTER 4. ERROR ANALYSIS OF THE EIGENVALUES AND EIGENVECTORS OF FREE-FREE CHAIN29

From the above figures, we can observe that there is no guarantee that the average
relative error of the eigenvalues obtained as the result of Inverse Iteration is lesser than
that of Chebyshev approximated eigenvalues. So it is better to omit the eigenvalues
modified by the Inverse Iteration and keep only eigenvectors.

The computational cost of eigenvalue and eigenvector computation of this Inverse
Iteration method is O(n2k3). This method is not computationally cheaper compared
to built-in methods [30]. Since it is not possible to manually find the eigenvectors of
high-dimensional matrices, we can’t perform the error analysis of eigenvectors separately.
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Chapter 5

Fixed Perturbation Analysis of
Tridiagonal k-Toeplitz Matrix

Chapter-outline

The closed-form expressions for the characteristic polynomials, of a perturbed tridiagonal
k-Toeplitz matrix are derived, for different boundary conditions i.e. entries of the first two
rows and the last two rows may have to be perturbed representing the boundary condition
on the chain. We show that a general solution for the roots of these characteristic polyno-
mials is intractable, unlike the free-free chain in the previous chapter. Hence we suggest
a few methods for identifying and updating only the perturbed eigenvalues of the free-free
chain due to the boundary conditions applied. In the case of a lattice, the corresponding
perturbations apply to all the chains required to construct the lattice.

In this chapter, we study the feasibility of analytical methods for the eigenvalues of a
tridiagonal k-Toeplitz matrix under fixed boundary conditions.

5.1 Fixed Boundary Condition: Perturbation The-
ory

The perturbed tridiagonal k-Toeplitz matrix under fixed boundary conditions is repre-
sented as M̃k. Here Mk is the tridiagonal k-Toeplitz matrix without any perturbations. In
order to obtain M̃k, the following conditions are applied on the entries of Mk, Mk(1, 1) = a

30
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and Mk(N,N) = b , where a and b are different from a1 and ak.

M̃k =



a x1 0 0 0 0 0 0 0
y1 a2 x2 0 0 0 0 0 0
0 y2 . . . . . . 0 0 0 0 0
0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0
0 0 0 0 y1

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 yk−2 ak−1 xk−1

0 0 0 0 0 0 0 yk−1 b



(5.1)

5.2 Recurrence Relation for the Fixed Perturbed Tridi-
agonal k-Toeplitz Matrices

We will derive the characteristic polynomial of the tridiagonal k-Toeplitz matrix under
fixed boundary conditions.

5.2.1 Perturbation Only in (N, N) Entry

With perturbation in (N,N) entry, the initial condition for the characteristic polynomial
becomes

p′
1(z)

q′
1(z)

 =
z + a1 −u1

1 0

 z + a2 −u2

1 0

 . . .
z + ak−1 −uk−1

1 0

 z + b

1

 (5.2)

p′
n(z)

q′
n(z)

 =
A(z) B(z)
C(z) D(z)

 p′
n−1(z)

q′
n−1(z)

 (5.3)

Here A(z), B(z), C(z), and D(z) are polynomials in z, which comes in the character-
istic polynomial derivation of tridiagonal k-Toeplitz matrices without any perturbation.

Solving the above matrix, we will get

p′
n(z) = A(z)p′

n−1(z) +B(z)q′
n−1(z) (5.4)
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k-toeplitz matrix
under fixed bound-

ary condition

γ = 0?

what per-
turbation?

Analytical
Expression for

Recurrence
Relation
is known

Only 2k
eigenvalues
are effected

2k eigenvalues
are effected

Exact solution
is known

Analytical
Expression for

Recurrence
Relation
is known

Existence of
limiting set

Unable to find
the analytical
expression of
limiting set

Replacement
with Inverse

Iteration

Direct Re-
placement idea

Similarity
Transformation

Yes

No

(1,1) only

(N,N) only both (1,1)

and (N,N)

Figure 5.1: This flowchart summarizes the approaches used for computing the eigenvalues of
tridiagonal k-toeplitz matrices under fixed boundary conditions.
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q′
n(z) = C(z)p′

n−1(z) +D(z)q′
n−1(z) (5.5)

With (N,N) perturbation, the three-term recurrence relation of the characteristic
polynomial changes to,

p′
n+1(z) = Qk(z)p′

n(z) + γp′
n−1(z) (5.6)

Without any perturbation, the recurrence relation is,

pn+1(z) = Qk(z)pn(z) + γpn−1(z) (5.7)

So with (N,N) perturbation, the format of the recurrence relation of the characteristic
polynomial remains the same, and only the initial condition for the characteristic poly-
nomial changes. Thus continuous spectra of the limiting set are not affected by (N,N)
entry perturbation. Only the initial condition of the recurrence relation changes and 2k
eigenvalues which are not part of the continuous spectra of limiting set change by the
equation given below.

Qk(z) = γ

p′(z) − p
′(z) (5.8)

where p′(z) = p′
1(z)−Qk(z)

The 2k eigenvalues are the solutions of the equation 5.8.

5.2.2 Perturbation Only in (1,1) Entry

When we add perturbation in (1, 1) entry, the equation 2.5 becomes
p̃n(z)
q̃n(z)

 =
z + a −u1

1 0

 z + a2 −u2

1 0

 . . .
z + ak −uk

1 0

 pn−1(z)
qn−1(z)

 (5.9)

Let,Ã(z) B̃(z)
C̃(z) D̃(z)

 =
z + a −u1

1 0

 z + a2 −u2

1 0

 . . .
z + ak −uk

1 0

 (5.10)

Then, p̃n(z)
q̃n(z)

 =
Ã(z) B̃(z)
C̃(z) D̃(z)

 pn−1(z)
qn−1(z)

 (5.11)
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From the above matrix, we get

p̃n(z) = Ã(z)pn−1(z) + B̃(z)qn−1(z) (5.12)

p̃n(z) = Ã(z)pn−1(z) + B̃(z)
B(z)(pn(z)− A(z)pn−1(z)) (5.13)

p̃n(z) = pn(z)B̃(z)
B(z) + pn−1(z)(Ã(z)−R(z)A(z)) (5.14)

where R(z) = B̃(z)
B(z) and S(z) = Ã(z)

R(z) − A(z).

Substitution of R(z) and S(z) in the 5.14 gives

p̃n(z)
R(z) = pn(z) + pn−1(z)S(z) (5.15)

Using Equation 2.10, we can write the above equation as

p̃n(z)
R(z) = Qk(z)pn−1(z) + γpn−2(z) + pn−1(z)S(z) (5.16)

p̃n(z)
R(z) = (Qk(z) + S(z))pn−1(z) + γpn−2(z) (5.17)

Writing above equation in matrix format,
 p̃n(z)

R(z)

pn−1(z)

 =
Qk(z) + S(z) γ

1 0

 pn−1(z)
pn−2(z)

 (5.18)

pn−1(z)
pn−2(z)

 =
Qk(z) γ

1 0

 pn−2(z)
pn−3(z)

 (5.19)

Applying 5.19 in 5.18,

 p̃n(z)
R(z)

pn−1(z)

 =
Qk(z) + S(z) γ

1 0

 Qk(z) γ

1 0

n−2 p1(z)
1

 (5.20)

From the above equation, it can be shown that p̃n(z)
R(z) can be written as a determinant of

the matrix given below.
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

p1(z) i
√
γ 0 0 . . . 0

i
√
γ Qk(z) i

√
γ 0 . . . 0

0 i
√
γ Qk(z) i

√
γ . . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . i
√
γ Qk(z) + S(z)


n×n

(5.21)

Let p1(z) = Qk(z) + p(z). Then zeros of p̃n(z)
R(z) can be written as λ = −Qk(z)√

γ
. λ is the

eigenvalue of W matrix and it is given below.

W =



p(z)√
γ
−1 0 0 . . . 0

1 0 −1 0 . . . 0
0 1 0 −1 . . . 0
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . 0 . . . 0 S(z)√
γ


n×n

(5.22)

Ln(ζ, λ) is the characteristic polynomial for the above matrix and Tn(λ) is the char-
acteristic polynomial for the skew-symmetric matrix given below.



0 −1 0 0 0 . . . 0
1 0 −1 0 0 . . . 0
0 1 0 −1 0 . . . 0
0 . . .

. . . ... . . . . . . . . .

0 0 . . . 0 1 0 −1
0 0 0 . . . 0 1 0


n×n

(5.23)

Let ζ1 = p(z)√
γ

and ζ2 = S(z)√
γ

Then by first expanding determinant along (1, 1) entry and further by (N,N) entry,
we have

Ln(ζ, λ) = (ζ1 − λ)((ζ2 − λ)Tn−2 + Tn−3) + (ζ2 − λ)Tn−3 + Tn−4

= (ζ1 − λ)(ζ2 − λ)Tn−2 + (ζ1 + ζ2 − 2λ)Tn−3 + Tn−4

= −λTn−1 − λ(ζ1 + ζ2)Tn−3 + Tn−2 + ζ1ζ2Tn−2

(5.24)

Using Tn = −λTn−1 + Tn−2 and Tn−1 = −λTn−2 + Tn−3, the above equation can be
reduced to,
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Ln(ζ, λ) = Tn + (ζ1 + ζ2)Tn−1 + ζ1ζ2Tn−2 (5.25)

Writing in matrix form, we will get

Ln(ζ, λ) =
[
1 ζ1 + ζ2 ζ1ζ2

] 
Tn

Tn−1

Tn−2

 (5.26)

Next step is to find the solution of Ln(ζ, λ) = 0.

5.2.3 Reducing into the Family of Polynomials

We outline two methods for further reductions.

Method 1

Using Tn = −λTn−1 +Tn−2 and Tn−1 = −λTn−2 +Tn−3, we can write the below matrix
equation.


Tn

Tn−1

Tn−2

 =


−λ 1 0
0 −λ 1
0 1 0



Tn−1

Tn−2

Tn−3

 (5.27)

Eigenvalues of the matrix,


−λ 1 0
0 −λ 1
0 1 0

 are t0 = −λ, t+ = −λ+
√

λ2+4
2 and

t− = −λ−
√

λ2+4
2

.

The corresponding eigenvectors are


1
0
0

 ,


|t+|2√

1+|t+|2+|t+|4
|t+|√

1+|t+|2+|t+|4

1√
1+|t+|2+|t+|4

, and


|t−|2√

1+|t−|2+|t−|4
|t−|√

1+|t−|2+|t−|4

1√
1+|t−|2+|t−|4


Equation 5.26 can be written as

Ln(ζ, λ) =
[
1 ζ1 + ζ2 ζ1ζ2

] 
−λ 1 0
0 −λ 1
0 1 0


n−2 

t0

1
0

 (5.28)
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where 
Tn

Tn−1

Tn−2

 =


−λ 1 0
0 −λ 1
0 1 0


n−2 

t0

1
0

 (5.29)

Using matrix decomposition, we get
−λ 1 0
0 −λ 1
0 1 0

 = Q∧Q−1 (5.30)

where

Q =


1 |t+|2√

1+|t+|2+|t+|4
|t−|2√

1+|t−|2+|t−|4

0 |t+|√
1+|t+|2+|t+|4

|t−|√
1+|t−|2+|t−|4

0 1√
1+|t+|2+|t+|4

1√
1+|t−|2+|t−|4

 (5.31)

∧ =


t0 0 0
0 t+ 0
0 0 t−

 (5.32)

and

Q−1 =


t+−t−√

1+|t+|2+|t+|4
√

1+|t−|2+|t−|4
|t−|2−|t+|2√

1+|t+|2+|t+|4
√

1+|t−|2+|t−|4
t+2t−−t−2t+√

1+|t+|2+|t+|4
√

1+|t−|2+|t−|4

0 1√
1+|t−|2+|t−|4

−t−√
1+|t−|2+|t−|4

0 −1√
1+|t+|2+|t+|4

t+√
1+|t+|2+|t+|4


(5.33)

Here Q is the eigenvector matrix and ∧ is the eigenvalue matrix.

Using the equations 5.28, 5.29, 5.30, 5.31 and 5.32 , Ln(ζ, λ) = 0 can be written as

(t+ −
1
t+

)n−2[(t+ + 1
t+

)(t+ −
1
t+

) + 1
t2+
− t2+] + (t+)n−2[t2+ + (ζ1 + ζ2)t+ + ζ1ζ2]

−(−1)n−2

tn−2
+

[ 1
t2+

+ (ζ1 + ζ2)
−1
t+

+ ζ1ζ2] = 0
(5.34)

t2n
+ + (ζ1 + ζ2)t2n−1

+ + (ζ1ζ2)t2n−2
+ − (−1)n[1− t+(ζ1 + ζ2) + (ζ1ζ2)t2+] = 0 (5.35)

Method 2
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 Tn

Tn−1

 =
−λ 1

1 0

n−1 1
0

 (5.36)

By applying matrix decomposition, we can write

−λ 1
1 0

 =


t+√

1+|t+|2
t−√

1+|t−|2

1√
1+|t+|2

1√
1+|t−|2


t+ 0

0 t−


 1√

1+|t−|2
−t−√
1+|t−|2

−1√
1+|t+|2

t+√
1+|t+|2

 (5.37)

Then,
Tn = 1√

1 + |t−|2
√

1 + |t+|2
[tn+ − tn−] (5.38)

Tn−1 = 1√
1 + |t−|2

√
1 + |t+|2

[tn−1
+ − tn−1

− ] (5.39)

For Ln(ζ, λ) = 0,

[tn+ − tn−] + (ζ1 + ζ2)[tn−1
+ − tn−1

− ] + (ζ1ζ2)[tn−2
+ − tn−2

− ] = 0 (5.40)

Using t− = −1
t+

,

[tn+ −
(−1)n

tn+
] + (ζ1 + ζ2)[tn−1

+ − (−1)n−1

tn−1
+

] + (ζ1ζ2)[tn−2
+ − (−1)n−2

tn−2
+

] = 0 (5.41)

[t2n
+ − (−1)n] + (ζ1 + ζ2)[t2n−1

+ − (−1)nt+] + (ζ1ζ2)[t2n−2
+ − (−1)n−1t2+] = 0 (5.42)

On further reduction,

t2n
+ + (ζ1 + ζ2)t2n−1

+ + (ζ1ζ2)t2n−2
+ − (−1)n[1− t+(ζ1 + ζ2) + (ζ1ζ2)t2+] = 0 (5.43)

By method 1 and method 2, we get the identical polynomial relation for t+. Since
there are two ζ terms in the equation 5.43, we cannot find the limiting set by applying
Rouche’s theorem [31] and other similar approaches.

5.2.4 Perturbation in Both (1, 1) and (N, N) Entries

When there is (N,N) entry perturbation to the tridiagonal k-Toeplitz matrix, the recur-
rence relation becomes,
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p′
n+1(z) = Qk(z)p′

n(z) + γp′
n−1(z) (5.44)

When only (N,N) perturbation is present, only the initial condition of recurrence
relation changes, and because of that the 2k eigenvalues are not part of the continuous
spectra of the limiting set change.

When both (1, 1) and (N,N) perturbations are present,
p̃′

n(z)
q̃′

n(z)

 =
z + a −u1

1 0

 z + a2 −u2

1 0

 . . .
z + ak −uk

1 0

 p′
n−1(z)

q′
n−1(z)

 (5.45)

p̃′
n(z)

q̃′
n(z)

 =
 ˜A(z) ˜B(z)

˜C(z) ˜D(z)

 p′
n−1(z)

q′
n−1(z)

 (5.46)

Here Ã(z), B̃(z), C̃(z) and D̃(z) are polynomials in z.

p̃′
n(z) = Ã(z)p′

n−1(z) + B̃(z)q′
n−1(z) (5.47)

Thus,

p̃′
n(z) = p′

n(z)B̃(z)
B(z) + p′

n−1(z)(Ã(z)−R(z)A(z)) (5.48)

where R(z) = B̃(z)
B(z) and S(z) = Ã(z)

R(z) − A(z).

p̃′
n(z)
R(z) = p′

n(z) + p′
n−1(z)S(z) (5.49)

Applying Equation 5.44 in 5.49,

p̃′
n(z)
R(z) = (Qk(z) + S(z))p′

n−1(z) + γp′
n−2(z) (5.50)

Writing in matrix format,
 p̃′

n(z)
R(z)

p′
n−1(z)

 =
Qk(z) + S(z) γ

1 0

 p′
n−1(z)

p′
n−2(z)

 (5.51)

p′
n−1(z)

p′
n−2(z)

 =
Qk(z) γ

1 0

 p′
n−2(z)

p′
n−3(z)

 (5.52)
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combining 5.52 and 5.53,

 p̃′
n(z)

R(z)

p′
n−1(z)

 =
Qk(z) + S(z) γ

1 0

 Qk(z) γ

1 0

n−2 p′
1(z)
1

 (5.53)

From the above equation, it can be shown that p̃′
n(z)

R(z) can be written as a determinant of
the matrix given below.



p′
1(z) i

√
γ 0 0 . . . 0

i
√
γ Qk(z) i

√
γ 0 . . . 0

0 i
√
γ Qk(z) i

√
γ . . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . i
√
γ Qk(z) + S(z)


n×n

(5.54)

Let, p′
1(z) = Qk(z) + p′(z).

Then zeros of p̃′
n(z)

R(z) can be written as λ′ = −Qk(z)√
γ

, where λ′ is the eigenvalue of W ′.

W ′ =



p′(z)√
γ
−1 0 0 . . . 0

1 0 −1 0 . . . 0
0 1 0 −1 . . . 0
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . 0 . . . 0 S(z)√
γ


n×n

(5.55)

L′
n(ζ ′, λ′) is the characteristic polynomial for the above matrix and Tn(λ) is the char-

acteristic polynomial for the below skew-symmetric matrix.



0 −1 0 0 0 . . . 0
1 0 −1 0 0 . . . 0
0 1 0 −1 0 . . . 0
0 . . .

. . . ... . . . . . . . . .

0 0 . . . 0 1 0 −1
0 0 0 . . . 0 1 0


n×n

(5.56)

Let ζ ′
1 = p′(z)√

γ
and ζ2 = S(z)√

γ
.

Then by first expanding determinant along (1, 1) entry and further by (N,N) entry,
we have

L′
n(ζ ′, λ′) = Tn + (ζ ′

1 + ζ2)Tn−1 + (ζ ′
1ζ2)Tn−2 (5.57)
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L′
n(ζ ′, λ′) =

[
1 ζ ′

1 + ζ2 ζ ′
1ζ2

] 
Tn

Tn−1

Tn−2

 (5.58)

Now we have to find the solution of L′
n(ζ ′, λ′) = 0.

Using the same approach we used in section 3.2.3, L′
n(ζ ′, λ′) = 0 can be written as

(t+ −
1
t+

)n−2[(t+ + 1
t+

)(t+ −
1
t+

) + 1
t2+
− t2+] + (t+)n−2[t2+ + (ζ ′

1 + ζ2)t+ + ζ ′
1ζ2]

−(−1)n−2

tn−2
+

[ 1
t2+

+ (ζ ′
1 + ζ2)

−1
t+

+ ζ ′
1ζ2] = 0

(5.59)

t2n
+ + (ζ ′

1 + ζ2)t2n−1
+ + (ζ ′

1ζ2)t2n−2
+ − (−1)n[1− t+(ζ ′

1 + ζ2) + (ζ ′
1ζ2)t2+] = 0 (5.60)

As we discussed in section 5.2.3, since there are two ζ terms in equation 5.60, we
cannot find the limiting set by applying Rouche’s theorem or equivalent approaches.

5.2.5 Special Case: γ = 0

Let’s see a special case where γ = 0. Then the equation 5.50 becomes,

p̃′
n(z) = R(z)[Qk(z) + S(z)]p′

n−1(z) (5.61)

and the equation 5.6 changes to,

p′
n(z) = Qk(z)p′

n−1(z) (5.62)

From the above equations, we get

p̃′
n(z) = R(z)[Qk(z) + S(z)][Qk(z)]n−1 (5.63)

This leads to
p̃′

n(z) = Qk(z)p̃′
n−1(z) (5.64)

So when γ = 0, instead of a three-term recurrence relation, we can obtain a two-
term recurrence relation. The above recurrence relation indicates that the eigenvalues
of tridiagonal k-Toeplitz matrices with γ = 0 are getting repeated. Here we propose an
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algorithm to find the eigenvalues of the tridiagonal k-Toeplitz matrix whose γ = 0, under
fixed perturbation.

Let n be the number of blocks of the perturbed tridiagonal k-Toeplitz matrix whose
eigenvalue we have to find.

Algorithm 8 Algorithm to find eigenvalues of γ = 0 tridiagonal k-Toeplitz matrix under
fixed perturbation
Require: Two null arrays Q and pert.

Find the eigenvalues of the unperturbed tridiagonal k-Toeplitz matrix using the python
built-in function with number of blocks = 1 and store it in the Q array.

Calculate the eigenvalues of the perturbed tridiagonal k-Toeplitz matrix using builtin
function with number of blocks = 2 and store it in pert array.

Append the pert array (n− 2) times by adding all elements in Q.

The pert array gives the eigenvalues of the tridiagonal k -Toeplitz matrix whose γ = 0
under fixed perturbation. The computational cost of this method is O(k2).

5.2.6 Off-Diagonal Perturbation

Under the fixed-fixed boundary conditions, there can be perturbation in (1, 2), (2, 1),
(N − 1, N), and (N,N − 1) entries of the matrix. In the presence of fixed boundary
conditions, we will obtain the characteristic polynomial of the tridiagonal k-Toeplitz
matrix considering the perturbations in the off-diagonal entries.

Perturbation in (N, N), (N-1, N) and (N, N-1) Entries

With perturbation in (N,N), (N − 1, N) and (N,N − 1) entries, the tridiagonal
k-Toeplitz matrix changes to

M̃k
′ =



a1 x1 0 0 0 0 0 0 0
y1 a2 x2 0 0 0 0 0 0
0 y2 . . . . . . 0 0 0 0 0
0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0
0 0 0 0 y1

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 yk−2 ak−1 x

0 0 0 0 0 0 0 y b



(5.65)

The initial condition for the characteristic polynomial of the above matrix can be
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written as,p′′
1(z)

q′′
1(z)

 =
z + a1 −u1

1 0

 z + a2 −u2

1 0

 . . .
z + ak−1 −ũk−1

1 0

 z + b

1

 (5.66)

where ũk−1 = xy. p′′
n(z)

q′′
n(z)

 =
A(z) B(z)
C(z) D(z)

 p′′
n−1(z)

q′′
n−1(z)

 (5.67)

Here A(z), B(z), C(z), and D(z) are polynomials in z, which comes in the character-
istic polynomial derivation of tridiagonal k-Toeplitz matrices without any perturbation.

From the above matrix, we can get

p′′
n(z) = A(z)p′′

n−1(z) +B(z)q′′
n−1(z) (5.68)

The format of this three-term recurrence relation for the characteristic polynomial
remains the same as that of the tridiagonal k-Toeplitz matrix without any perturbation.
So the limiting set is unchanged under this perturbation and only 2k eigenvalues are
getting changed.

Perturbation in (1, 1), (1, 2) and (2, 1) Entries

When we add perturbation in (1, 1), (1, 2) and (2, 1) entries, the tridiagonal k-Toeplitz
matrix becomes,

M̃k
′′ =



a x̃ 0 0 0 0 0 0 0
ỹ a2 x2 0 0 0 0 0 0
0 y2 . . . . . . 0 0 0 0 0
0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0
0 0 0 0 y1

. . . . . . 0 0
0 0 0 0 0 . . . . . . . . . 0
0 0 0 0 0 0 yk−2 ak−1 xk−1

0 0 0 0 0 0 0 yk−1 ak



(5.69)

The characteristic polynomial equation for the above matrix can be written as, ˜̃pn(z)
˜̃qn(z)

 =
z + a −ũ1

1 0

 z + a2 −u2

1 0

 . . .
z + ak −uk

1 0

 pn−1(z)
qn−1(z)

 (5.70)

where ũ1 = x̃ỹ.
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Let,
 ˜̃A(z) ˜̃B(z)

˜̃C(z) ˜̃D(z)

 =
z + a −ũ1

1 0

 z + a2 −u2

1 0

 . . .
z + ak −uk

1 0

 (5.71)

Then,  ˜̃pn(z)
˜̃qn(z)

 =
 ˜̃A(z) ˜̃B(z)

˜̃C(z) ˜̃D(z)

 pn−1(z)
qn−1(z)

 (5.72)

From the above matrix, we get

˜̃pn(z) = ˜̃A(z)pn−1(z) + ˜̃B(z)qn−1(z) (5.73)

˜̃pn(z) = ˜̃A(z)pn−1(z) +
˜̃B(z)
B(z)(pn(z)− A(z)pn−1(z)) (5.74)

˜̃pn(z) = pn(z)
˜̃B(z)
B(z) + pn−1(z)( ˜̃A(z)− R̃(z)A(z)) (5.75)

where R̃(z) =
˜̃B(z)
B(z) and S̃(z) =

˜̃A(z)
R̃(z) − A(z).

Substitution of R̃(z) and S̃(z) in equation 5.75 gives

˜̃pn(z)
R̃(z)

= pn(z) + pn−1(z)S̃(z) (5.76)

The characteristic polynomial of tridiagonal k-Toeplitz matrix under perturbation in
(1, 1), (1, 2), and (2, 1) entries also follows a three-term recurrence relation. We can
show that there exists a limiting set for the eigenvalues of tridiagonal k-Toeplitz matrices
under perturbation in (1, 1), (1, 2), and (2, 1) entries for finite large n [32].

5.3 Methods to Approximate the Limiting Set for
Fixed Perturbation

Since we couldn’t find the limiting set for the eigenvalues of the tridiagonal k -Toeplitz
matrix under fixed boundary conditions, we have to develop methods to approximate the
limiting set.

To begin with, we show below that a straightforward one-rank perturbation of the
tridiagonal k -Toeplitz matrix is not useful in imposing the fixed boundary condition on
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the chain. One rank perturbation [33] on a n × n square matrix A can be written as
A+ uvT .

uvT =



u1

u2
...
...
un


[
v1 v2 . . . . . . vn

]
(5.77)

uvT =



u1v1 u1v2 . . . u1vn−1 u1vn

u2v1 u2v2 . . . u2vn−1 u2vn

... ... . . .
... ... ...

... ... . . .
... ... ...

... ... . . .
... ... ...

unv1 unv2 . . . unvn−1 unvn


(5.78)

Here u is one of the eigenvectors of A and v can be a random vector with the same size
of u.

Theorem: Let u and v be two n-dimensional column vectors such that u is an eigen-
vector of A associated with the eigenvalue λ1. Then, the eigenvalues of A + uvT are
(λ1 + vTu, λ2, ....λn).

If the fixed perturbation can be written as a one-rank perturbation, we can easily
find the eigenvalues of a tridiagonal k-Toeplitz matrix under fixed perturbation using the
above theorem. For fixed perturbation, we need perturbation only in (1, 1) and (N,N)
entries of the tridiagonal k-Toeplitz matrix. Then, all the entries of uvT have to be zero
except (1, 1) and (N,N) entries. That is, u1v1 ̸= 0 , unvn ̸= 0 and ujvj = 0,∀j ̸= 0 and
n. To get perturbation only in (1, 1) and (N,N) entries, we have to apply conditions on
the entries of both u and v. Since u is the eigenvector of matrix A, it is not possible to
put conditions on the entries of u. So we can’t use one rank perturbation method to find
the eigenvalues of the tridiagonal k-Toeplitz matrix under fixed perturbation.

5.3.1 Similarity Transformation

Two matrices A and B are similar if there exists an invertible matrix X such that A =
X−1BX [34].

Theorem: Suppose A and B are similar matrices. Then A and B have the same
characteristic polynomial and hence the same eigenvalues.

Similarity transformation [35] provides a way to connect two symmetric tridiagonal
k-Toeplitz matrices, whose x1 = 0 and xk−1 = 0 and their (1, 1) and (N,N) entries are
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interchanged. Here we are going to use the idea that eigenvalues won’t change when we
apply similarity transformation to matrices.

Consider a symmetric tridiagonal k-Toeplitz matrix , Mk1 whose k = 3 and the number
of block(n) = 1. Let, Yk1 be the matrix generated by applying (N,N) entry perturbation
= ϵ in Mk1.

Mk1 =


a1 x1 0
x1 a2 x2

0 x2 a3

 and Yk1 =


a1 x1 0
x1 a2 x2

0 x2 a3 + ϵ

.

P13Yk1P13 =


a3 + ϵ x2 0
x2 a2 x1

0 x1 a1

 (5.79)

Here P13 is the permutation matrix which is formed by the permutation of 1 and 3
columns of I3 matrix. Since P−1

13 = P13, Yk1 and P13Yk1P13 are similar matrices. We can
see that if x1 = 0 and x2 = 0, P13Yk1P13 can be written as Mk1 matrix with (1, 1) entry
perturbation = a3 + ϵ− a1 and (N,N) entry perturbation = a1 − a3.

P13 =


0 0 1
0 1 0
1 0 0

 and P16 =



0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0


P16 is the permutation matrix which is formed by the permutation of 1 and 6 columns

of I6 matrix.

When n = 2 and k = 3,

Mk2 =



a1 x1 0 0 0 0
x1 a2 x2 0 0 0
0 x2 a3 x3 0 0
0 0 x3 a1 x1 0
0 0 0 x1 a2 x2

0 0 0 0 x2 a3


and Yk2 =



a1 x1 0 0 0 0
x1 a2 x2 0 0 0
0 x2 a3 x3 0 0
0 0 x3 a1 x1 0
0 0 0 x1 a2 x2

0 0 0 0 x2 a3 + ϵ


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P16Yk2P16 =



a3 + ϵ 0 0 0 x2 0
0 a2 x2 0 0 x1

0 x2 a3 x3 0 0
0 0 x3 a1 x1 0
x2 0 0 x1 a2 0
0 x1 0 0 0 a1


(5.80)

Here Mk2 be a symmetric tridiagonal k-Toeplitz matrix with k = 3 and the number
of blocks(n) = 2. Yk2 is a matrix formed by applying ϵ perturbation in (N,N) entry of
Mk2. P16Yk2P16 is a similarity transformation of Yk2. If x1 = 0 and x2 = 0, P16Yk2P16 can
be written as Mk2 matrix with (1, 1) entry perturbation = a3 + ϵ− a1 and (N,N) entry
perturbation = a1 − a3.

Let us generalize the above-discussed idea. P1N is the permutation matrix which is
formed by the permutation of 1 and N columns of IN matrix and Mk is a symmetric
tridiagonal k-Toeplitz matrix with x1 = 0 and xk−1 = 0. Yk matrix is formed by applying
(N,N) entry perturbation = ϵ on Mk. When Yk is left and right multiplied by P1N

permutation matrix result in P1NYkP1N matrix. P1NYkP1N matrix has perturbation in
both (1,1) and (N,N) entries with (1,1) entry perturbation = ak + ϵ − a1 and (N,N)
entry perturbation = a1−ak. Here Yk has only (N,N) entry perturbation, so eigenvalues
of Yk can be found using the Chebyshev approximation of Mk matrix and the equation
5.8. Since P1NYkP1N is the similarity transform of Yk, they have same eigenvalues.

5.3.2 Direct Replacement Method for Perturbed Eigenvalues

We have derived three-term recurrence relation for the tridiagonal-toeplitz matrix under
the fixed perturbation. The polynomials with a three-term recurrence have a limiting set
[32], and to find only the difference between the two limiting sets of eigenvalues i.e. with
and without perturbation, we can use direct replacement method.

The direct replacement is a method to approximate the limiting set of the tridiagonal
k-Toeplitz matrix after (1, 1) entry perturbation. This method is based on the replace-
ment of eigenvalues which has maximum change during the (1, 1) entry perturbation.

Here we consider a tridiagonal k-Toeplitz matrix with period = k, number of blocks
= n, and size of the matrix = nk × nk.

Graphs of error analysis of direct replacement eigenvalues are given in the next chap-
ter.
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Algorithm 9 Direct Replacement Algorithm
Require: Null arrays called C, R, and TR.

Calculate the Chebyshev approximated eigenvalues for the unperturbed tridiagonal
k-Toeplitz matrix for the no of blocks (n) we want, and store it as C.

Compare Chebyshev approximated eigenvalues of the unperturbed tridiagonal k-
Toeplitz matrix at n = 2 with builtin eigenvalues of the (1,1) entry perturbed tridiag-
onal k-Toeplitz matrix at n = 2.

Then find the two Chebyshev approximated eigenvalues, which are getting maximum
change during perturbation in (1,1) entry when n = 2, and store it in a null array
called R.

Find those two built-in eigenvalues of the (1,1) entry perturbed tridiagonal k-Toeplitz
matrix at n = 2, which are getting the maximum change after perturbation and store
it in the TR array.

Replace the two eigenvalues from the C array which are close to R array elements with
the TR elements.

5.3.3 Replacement for Perturbed Eigenvalues with Inverse It-
eration

Replacement using Inverse Iteration is a modified version of the Direct Replacement
algorithm. Here we use the Inverse Iteration algorithm to replace the eigenvalues which
have the maximum change due to (1, 1) entry perturbation. The algorithm for this
method is given below.

We consider tridiagonal k-Toeplitz matrix with period = k, number of blocks = n and
size of the matrix = nk × nk.

Page 57 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

CHAPTER 5. FIXED PERTURBATION ANALYSIS OF TRIDIAGONAL K-TOEPLITZ MATRIX49

Algorithm 10 Replacement using Inverse Iteration
Require: Null arrays called C, R, I, and TR.

Calculate the Chebyshev approximated eigenvalues for the unperturbed tridiagonal
k-Toeplitz matrix for the no of blocks(n) we want, and store it as C.

Compare Chebyshev approximated eigenvalues of the unperturbed tridiagonal k-
Toeplitz matrix at n = 2, with builtin eigenvalues of the (1, 1) entry perturbed tridi-
agonal k-Toeplitz matrix at n = 2.

Then find the two Chebyshev approximated eigenvalues, which are getting maximum
change during perturbation in (1,1) entry when n = 2, and store it in a null array
called R.

Find those two built-in eigenvalues of the (1,1) entry perturbed tridiagonal k-Toeplitz
matrix at n = 2, which are getting the maximum change after perturbation and store
it in the TR array.

Perform the Inverse Iteration algorithm taking TR eigenvalues as input and store the
output eigenvalues in the I array.

Replace the two eigenvalues from the C array which are close to R array elements with
the I elements.

Error analysis of the eigenvalues generated by replacement using the Inverse Iteration
algorithm is given in the next chapter.
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Chapter 6

Example Results for Fixed and
Periodic Boundary Conditions

Chapter-outline

Here, the approaches suggested in the previous chapter to identify the perturbed Chebyshev
eigenvalues, and correct them using direct numerical methods, is demonstrated.

6.1 Fixed Perturbation

During only (N,N) entry perturbation in the tridiagonal k-Toeplitz matrix, 2k eigenval-
ues that are not part of the continuous limiting set are getting affected and the continuous
part of the limiting set remains the same.

Due to (N,N) entry perturbation, only the initial condition changes and 2k eigenval-
ues, those are not part of the continuous spectra of limiting set changes by the equation
given below.

Qk(z) = γ

p′(z) − p
′(z) (6.1)

where p′(z) = p′
1(z)−Qk(z)

The 2k eigenvalues are the solutions of the equation 6.1.

If there is a perturbation in both (1, 1) and (N,N) entries, we can treat (1, 1) and
(N,N) entry perturbations independent of each other. Due to (N,N) entry perturbation,
2k eigenvalues that are not part of the continuous limiting set are getting affected, and

50
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CHAPTER 6. EXAMPLE RESULTS FOR FIXED AND PERIODIC BOUNDARY CONDITIONS51

because of (1, 1) entry perturbation, the continuous part of the limiting set is getting
affected.

6.1.1 Fixed Boundary Condition for γ = 0 Matrices

In Chapter 5, we have developed an algorithm to find the exact eigenvalues of the tridi-
agonal k-Toeplitz matrix with γ = 0 under fixed perturbation. For γ = 0, for tridiagonal
k-Toeplitz matrices, the characteristic polynomial can be written as the product of at
most k factors, thus the matrix has at most k different eigenvalues. γ = 0 chains can be
one-directional or they can have nearest neighbors without any interaction. The follow-
ing figures give the average relative error in the built-in eigenvalues for the tridiagonal
k-Toeplitz matrices with γ = 0 under fixed perturbation. With our algorithm, the exact
eigenvalues can be found for any n without any error for γ = 0, tridiagonal k-Toeplitz
matrices.

Figure 6.1: Error analysis of eigenvalues: diagonal= [0, 0, 0], upper diagonal= [1,−1, 1], lower
diagonal= [1, 0,−1], perturbation in (1, 1) entry= 100, perturbation in (N, N) entry = −2.
C = 382.6, where C is the condition number of the matrix when n = 200. Using our algorithm,
we can find the eigenvalues without any error.
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CHAPTER 6. EXAMPLE RESULTS FOR FIXED AND PERIODIC BOUNDARY CONDITIONS52

Figure 6.2: Error analysis of eigenvalues: diagonal= [1, 2, 1], upper diagonal= [0, 1, 1] = lower
diagonal, perturbation in (1, 1) entry= 100, perturbation in (N, N) entry = −2. C = 11.344,
where C is the condition number of the matrix when n = 200. Using our algorithm, we can
find the eigenvalues without any error.

6.1.2 Similarity Transformation

Using similarity transformation, we can connect the eigenvalues of only (N,N) entry
perturbed symmetric tridiagonal k-Toeplitz matrix whose x1 = 0 and xk−1 = 0 and sym-
metric tridiagonal k-Toeplitz matrix with perturbation in both (1, 1) and (N,N) entries.
Since symmetric tridiagonal k-Toeplitz matrix whose x1 = 0 and xk−1 = 0 with (1, 1)
entry perturbation = a1 − ak + ϵ and (N,N) entry perturbation = ak − a1 is similar
to symmetric tridiagonal k-Toeplitz matrix whose x1 = 0 and xk−1 = 0 with (N,N)
entry perturbation = ϵ , they have same eigenvalues. When there is only (N,N) entry
perturbation ( (N,N) entry perturbation = ϵ) in the symmetric tridiagonal k-Toeplitz
matrix (Mk), the 2k eigenvalues which are not part of the continuous limiting set are
getting changed. With this idea we can find the eigenvalues of symmetric tridiagonal
k-Toeplitz matrix with both (1, 1) and (N,N) entry perturbations ( (1, 1) entry pertur-
bation = a1 − ak + ϵ and (N,N) entry perturbation = ak − a1).

6.1.3 Direct Replacement Method for Perturbed Eigenvalues

The given below graphs show how the average relative error of eigenvalues of tridiagonal k-
Toeplitz matrices under (1, 1) entry perturbation calculated using the direct replacement
algorithm changes when the number of blocks (n) increases.
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CHAPTER 6. EXAMPLE RESULTS FOR FIXED AND PERIODIC BOUNDARY CONDITIONS53

Figure 6.3: Direct Replacement: diagonal= [10, 12, 3], upper diagonal= [1, 41, 5], lower diag-
onal=upper diagonal, k = 3 is the period of chain, perturbation in (1, 1) entry = 0.1. Here
average relative error of the direct replacement method is lesser than that of the Chebyshev
approximated eigenvalues, so the direct replacement method works better than the Chebyshev
approximation method. Condition number of the matrix = 5.024.

Figure 6.4: Direct Replacement: diagonal= [10, 12, 3], upper diagonal= [1, 41, 5], lower diag-
onal=upper diagonal, k = 3 is the period of chain, perturbation in (1, 1) entry = 5. Here
average relative error of the direct replacement method is lesser than that of the Chebyshev
approximated eigenvalues, so the direct replacement method works better than the Chebyshev
approximation method. Condition number of the matrix = 5.024.
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Figure 6.5: Direct Replacement: diagonal= [10, 12, 3], upper diagonal= [1, 41, 5], lower diago-
nal=upper diagonal, k = 3 is the period of chain, perturbation in (1, 1) entry = −10. Here
average relative error of the direct replacement method is lesser than that of the Chebyshev
approximated eigenvalues, so the direct replacement method is not better than the Chebyshev
approximation method. Condition number of the matrix = 5.024.

Figure 6.6: Direct Replacement: diagonal= [1, 2, 3], upper diagonal= [1, 4,−2], lower diago-
nal=upper diagonal, k = 3 is the period of chain, perturbation in (1, 1) entry = 50. Here
average relative error of the direct replacement method is almost zero, so the direct replace-
ment method works better than the Chebyshev approximation method. The condition number
of the matrix when n = 50 is 17.7936, the condition number of the matrix when n = 100 is
17.8525, the condition number of the matrix when n = 150 is 17.8645, and the condition number
of the matrix when n = 200 is 17.8688.

The direct replacement method works better in most cases, but we can’t give any
guarantee that the direct replacement idea will work for every case of (1, 1) entry pertur-
bation.
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6.1.4 Replacement for Perturbed Eigenvalues with Inverse It-
eration

Replacement using Inverse Iteration is a modification to the direct replacement method
and given below graphs represent the error diagram of eigenvalues that are generated by
replacement with Inverse Iteration.

Figure 6.7: Replacement using Inverse Iteration: diagonal= [1, 2, 3], lower diagonal= [1, 4,−2],
upper diagonal=lower diagonal, k = 3 is the period of chain, perturbation in (1, 1) entry
= 0.001. Eigenvalues modified using Inverse Iteration are more erroneous than both the direct
replacement method and the Chebyshev approximation method. Thus modification of eigen-
values using Inverse Iteration fails here. The condition number of the matrix when n = 50 is
17.7936, the condition number of the matrix when n = 100 is 17.8525, the condition number of
the matrix when n = 150 is 17.8645, and the condition number of the matrix when n = 200 is
17.8688. Here n is the number of blocks of the matrix.
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Figure 6.8: Replacement using Inverse Iteration: diagonal= [1, 2, 3], lower diagonal = [1, 4,−2],
upper diagonal=lower diagonal, k = 3 is the period of chain, perturbation in (1, 1) entry = −5.
Eigenvalues modified using Inverse Iteration are more erroneous than the direct replacement
method. Thus modification of eigenvalues using Inverse Iteration fails here. The condition
number of the matrix when n = 50 is 17.7936, the condition number of the matrix when
n = 100 is 17.8525, the condition number of the matrix when n = 150 is 17.8645, and the
condition number of the matrix when n = 200 is 17.8688. Here n is the number of blocks of the
matrix.

Figure 6.9: Replacement using Inverse Iteration: diagonal= [1, 2, 3], lower diagonal= [1, 4,−2],
upper diagonal=lower diagonal, k = 3 is the period of chain, perturbation in (1, 1) entry = 2.
Eigenvalues modified using Inverse Iteration are more erroneous than the direct replacement
method. Thus modification of eigenvalues using Inverse Iteration fails here. The condition
number of the matrix when n = 50 is 17.7936, the condition number of the matrix when
n = 100 is 17.8525, the condition number of the matrix when n = 150 is 17.8645, and the
condition number of the matrix when n = 200 is 17.8688. Here n is the number of blocks of the
matrix.

From the above graphs, we can conclude that replacement for perturbed eigenvalues
using Inverse Iteration need not be better than the direct replacement method.
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6.2 Periodic Perturbation Analysis

In this section, we compare the eigenvalues of open and closed k-periodic chains.

Figure 6.10: Error analysis of eigenvalues under periodic perturbation: diagonal=
[−500, 1000, 80,−100, 50], upper diagonal= [20, 19, 50, 40,−50], lower diagonal=upper diago-
nal.

Figure 6.11: Error analysis of eigenvalues under periodic perturbation: diagonal =
[−500, 1000, 80,−100, 50], upper diagonal= [20, 19, 50, 40,−1], lower diagonal=upper diagonal.

In the above figures, the error is the difference between eigenvalues with and without
periodic perturbation. We can reach the following conclusions through the analysis of
the figures and n is the number of blocks of the matrix.

• At large n, eigenvalues of tridiagonal k-Toeplitz matrices with periodic perturba-
tion converge to the eigenvalues of tridiagonal k-Toeplitz matrices with free-free
boundary condition.

• For large n, we can approximate the Chebyshev approximated eigenvalues for the
tridiagonal k-Toeplitz matrix with periodic boundary conditions.
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• For large n, we can find the eigenvalues of the tridiagonal k-Toeplitz matrix under
periodic boundary conditions with the computational cost of O(nk2).
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Chapter 7

Appendix

7.0.1 Adjacency Matrices for the Lattices in Chapter 2

(a) Figure 3.4

Lxx =


a1 x1 0
x1 a1 x1

0 x1 a1

 and Lyy =



a2 x2 0 0 0 0
x2 a3 x3 0 0 0
0 x3 a2 x2 0 0
0 0 x2 a3 x3 0
0 0 0 x3 a2 x2

0 0 0 0 x2 a3


Here Lxx and Lyy represent adjacency matrices of the chains in figure 3.2 and figure

7.7 respectively. Adjacency matrix for the 2D lattice formed by Lxx and Lyy is given by,

A2D−free−free = Lxx ⊕ Lyy = Lxx ⊗ I2 + I1 ⊗ Lyy

Lxx ⊗ I2 =



a1 0 x1 0 0 0
0 a1 0 x1 0 0
x1 0 a1 0 x1 0
0 x1 0 a1 0 x1

0 0 x1 0 a1 0
0 0 0 x1 0 a1


and I1 ⊗ Lyy = Lyy

So,
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A2D−free−free =



a1 + a2 x2 x1 0 0 0
x2 a1 + a3 x3 x1 0 0
x1 x3 a1 + a2 x2 x1 0
0 x1 x2 a1 + a3 x3 x1

0 0 x1 x3 a1 + a2 x2

0 0 0 x1 x2 a1 + a3


(b) Figure 3.7

The adjacency matrices of the chains in figures 3.6 and 3.5 can be represented as Lxx

and Lyy.

Lxx =


a1 x1 0
x1 a1 x1

0 x1 a1

 and Lyy =



ã2 x2 0 0 0 0
x2 a3 x3 0 0 0
0 x3 a2 x2 0 0
0 0 x2 a3 x3 0
0 0 0 x3 a2 x2

0 0 0 0 x2 ã3


Adjacency matrix for the 2D lattice formed by Lxx and Lyy is given below.

A2D−fixed = Lxx ⊕ Lyy = Lxx ⊗ I2 + I1 ⊗ Lyy

Lxx ⊗ I2 =



a1 0 x1 0 0 0
0 a1 0 x1 0 0
x1 0 a1 0 x1 0
0 x1 0 a1 0 x1

0 0 x1 0 a1 0
0 0 0 x1 0 a1


and I1 ⊗ Lyy = Lyy

A2D−fixed =



a1 + ã2 x2 x1 0 0 0
x2 a1 + a3 x3 x1 0 0
x1 x3 a1 + a2 x2 x1 0
0 x1 x2 a1 + a3 x3 x1

0 0 x1 x3 a1 + a2 x2

0 0 0 x1 x2 a1 + ã3



7.0.2 Figures and Adjacency Matrix for the Tight Binding Lat-
tices

(a) When both x and y directional chains are diatomic and under the free-free boundary
condition.
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Figure 7.1: One-dimensional free-free di-atomic lattice, (ϵk = ϵA, ∀ odd k, ϵk = ϵB, ∀ even k,
tk = tAB, ∀ odd k, tk = tBA,∀ even k)

Figure 7.2: One-dimensional free-free di-atomic lattice, (ϵk = ϵC ,∀ odd k, ϵk = ϵD,∀ even k,
tk = tCD,∀ odd k, tk = tDC ,∀ even k)

Figure 7.3: Two-dimensional lattice with free-free boundary condition (This lattice is the Kro-
necker sum of diatomic chain with free-free boundary condition in the x direction(Figure 7.1)
and diatomic chain with free-free boundary condition in the y direction(Figure 7.2))

Let’s see how to find the adjacency matrix for the above 2D lattice.

Let, Lxx =


ϵA tAB 0 0
tAB ϵB tBA 0
0 tBA ϵA tAB

0 0 tAB ϵB

 and Lyy =


ϵC tCD 0 0
tCD ϵD tDC 0
0 tDC ϵC tCD

0 0 tCD ϵD


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Adjacency matrix for the 2D lattice formed by Lxx and Lyy is given by,

A2D−free−free = Lxx ⊕ Lyy = Lxx ⊗ I2 + I2 ⊗ Lyy

Lxx ⊗ I2 =



ϵA 0 tAB 0 0 0 0 0
0 ϵA 0 tAB 0 0 0 0
tAB 0 ϵB 0 tBA 0 0 0
0 tAB 0 ϵB 0 tBA 0 0
0 0 tBA 0 ϵA 0 tAB 0
0 0 0 tBA 0 ϵA 0 tAB

0 0 0 0 tAB 0 ϵB tCD

0 0 0 0 0 tAB 0 ϵB



I2 ⊗ Lyy =



ϵC tCD 0 0 0 0 0 0
tCD ϵD tDC 0 0 0 0 0
0 tDC ϵC tCD 0 0 0 0
0 0 tCD ϵD tDC 0 0 0
0 0 0 0 ϵC tCD 0 0
0 0 0 0 tCD ϵD tDC 0
0 0 0 0 0 tDC ϵC tCD

0 0 0 0 0 0 tCD ϵD



A2D−free−free =



ϵA + ϵC tCD tAB 0 0 0 0 0
tCD ϵA + ϵD tDC tAB 0 0 0 0
tAB tDC ϵB + ϵC tCD tBA 0 0 0
0 tAB tCD ϵB + ϵD tDC tBA 0 0
0 0 tBA 0 ϵA + ϵC tCD tAB 0
0 0 0 tBA tCD ϵA + ϵD tDC tAB

0 0 0 0 tAB tDC ϵB + ϵC tCD

0 0 0 0 0 tAB tCD ϵB + ϵD


(b) When the x chain is triatomic with free-free boundary condition and the y chain is
diatomic with free-free boundary condition.

Figure 7.4: One-dimensional free-free di-atomic lattice, (ϵk = ϵA, for k = 1, 4, 7.., ϵk = ϵB, for
k = 2, 5, 8.. and, ϵk = ϵC for k = 3, 6, 9.., tk = tAB, for k = 1, 4, 7.., tk = tBC , for k = 2, 5, 8..
and tk = tCA for k = 3, 6, 9..)
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Figure 7.5: One-dimensional free-free di-atomic lattice, (ϵk = ϵD,∀ odd k, ϵk = ϵE ,∀ even k,
tk = tDE ,∀ odd k, tk = tED, ∀ even k)

Figure 7.6: Two-dimensional lattice with free-free boundary condition (This lattice is the Kro-
necker sum of tri-atomic chain with free-free boundary condition in the x direction(Figure 7.4)
and di-atomic chain with free-free boundary condition in the y direction(Figure 7.5))

Let’s see how to find the adjacency matrix for the above 2D lattice.

Let, Lxx =



ϵA tAB 0 0 0 0
tAB ϵB tBC 0 0 0
0 tBC ϵC tCA 0 0
0 0 tCA ϵA tAB 0
0 0 0 tAB ϵB tBC

0 0 0 0 tBC ϵC


and Lyy =


ϵD tDE 0 0
tDE ϵE tED 0
0 tED ϵD tDE

0 0 tDE ϵE



Adjacency matrix for the 2D lattice formed by Lxx and Lyy is given by,

A2D−free−free = Lxx ⊕ Lyy = Lxx ⊗ I2 + I3 ⊗ Lyy
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Lxx ⊗ I2 and I3 ⊗ Lyy are 12× 12 dimensional matrices. But we are considering only
the first 6 rows and the first 6 columns of these matrices.

Lxx ⊗ I2 =



ϵA 0 tAB 0 0 0
0 ϵA 0 tAB 0 0
tAB 0 ϵB 0 tBC 0
0 tAB 0 ϵB 0 tBC

0 0 tBC 0 ϵC 0
0 0 0 tBC 0 ϵC



I3 ⊗ Lyy =



ϵD tDE 0 0 0 0
tDE ϵE tED 0 0 0
0 tED ϵD tDE 0 0
0 0 tDE ϵE 0 tBC

0 0 0 0 ϵD tDE

0 0 0 0 tDE ϵE



A2D−free−free =



ϵA + ϵD tDE tAB 0 0 0
tDE ϵA + ϵE tED tAB 0 0
tAB tED ϵB + ϵD tDE tBC 0
0 tAB tDE ϵB + ϵE 0 tBC

0 0 tBC 0 ϵC + ϵD tDE

0 0 0 tBC tDE ϵC + ϵE


(7.1)

(c) When the x directional chain is di-atomic with free-free boundary condition and the
y directional chain is di-atomic with fixed-fixed boundary condition.

Figure 7.7: One-dimensional fixed-fixed di-atomic lattice, (ϵk = ϵC , ∀ odd k except the bound-
aries, ϵk = ϵD,∀ even k except the boundaries , tk = tCD, ∀ odd k, tk = tDC ,∀ even k)
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Figure 7.8: Two-dimensional lattice with free-free boundary condition (This lattice is the Kro-
necker sum of di-atomic chain with free-free boundary condition in the x direction(Figure 7.4)
and di-atomic chain with fixed boundary condition in the y direction(Figure 7.7))

Let’s see how to find the adjacency matrix for the above 2D lattice.

Let, Lxx =



ϵA tAB 0 0 0 0
tAB ϵB tBA 0 0 0
0 tBA ϵA tAB 0 0
0 0 tAB ϵB tBA 0
0 0 0 tBA ϵA tAB

0 0 0 0 tAB ϵB


and Lyy =



ϵE tCD 0 0 0 0
tCD ϵD tDC 0 0 0
0 tDC ϵC tCD 0 0
0 0 tCD ϵD tDC 0
0 0 0 tDC ϵC tCD

0 0 0 0 tCD ϵF


Adjacency matrix for the 2D lattice formed by Lxx and Lyy is given below.

A2D−fixed = Lxx ⊕ Lyy = Lxx ⊗ I2 + I2 ⊗ Lyy

Lxx ⊗ I2 and I2 ⊗ Lyy are 12× 12 dimensional matrices. But we are considering only
the first 6 rows and the first 6 columns of these matrices.

Lxx ⊗ I2 =



ϵA 0 tAB 0 0 0
0 ϵA 0 tAB 0 0
tAB 0 ϵB 0 tBA 0
0 tAB 0 ϵB 0 tBA

0 0 tBA 0 ϵA 0
0 0 0 tBA 0 ϵA


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I2 ⊗ Lyy =



ϵE tCD 0 0 0 0
tCD ϵD tDC 0 0 0
0 tDC ϵC tCD 0 0
0 0 tCD ϵD tDC 0
0 0 0 tDC ϵC tCD

0 0 0 0 tCD ϵF



A2D−fixed =



ϵA + ϵE tCD tAB 0 0 0
tCD ϵA + ϵD tDC tAB 0 0
tAB tDC ϵB + ϵC tCD tBA 0
0 tAB tCD ϵB + ϵD 0tDC tBA

0 0 tBA tDC ϵA + ϵC tCD

0 0 0 tBA tCD ϵA + ϵF


(7.2)

7.0.3 Eigenvalue Derivation of the Matrices used for Error Anal-
ysis

The derivation of the characteristic polynomial is done by the method of induction.

(a) upper diagonal chain=[0,0,-1], lower diagonal chain=[1,1,1], diagonal chain=[0,0,0],
period of the chain (k) = 3 and chain length = nk.

When n = 1

M1 =


0 0 0
1 0 0
0 1 0

 (7.3)

The characteristic polynomial is

P1 = (−λ)3 (7.4)

λ = 0, 0, 0 (7.5)

When n = 2,
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M2 =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 −1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


(7.6)

The characteristic polynomial is

P2 = λ4[1 + λ2] = (−λ)2+2(λ2 + 1)2−1 (7.7)

λ = 0, 0, 0, 0, i,−i (7.8)

When n = 3,

M3 =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 −1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



(7.9)

Characteristic polynomial is

P3 = λ2[−λ(P2) + λ2(P1)− λ3] = (−λ)3+2(λ2 + 1)3−1 (7.10)

λ = 0, 0, 0, 0, 0, i, i,−i,−i (7.11)

Similarly for any n, the characteristic polynomial is

Pn = λ2[−λ(Pn−1) + λ2(Pn−2)− λ3] = (−λ)n+2(λ2 + 1)n−1 (7.12)

So, for any n, λ’s are n+2 number of zeros and n-1 number of i and -i.
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(b) upper diagonal chain=[0,0,1], lower diagonal chain=[-1,-1,-1], diagonal chain=[0,0,0],
period of the chain (k) = 3 and chain length = nk.

When n = 1

M1 =
 0 0
−1 0

 (7.13)

The characteristic polynomial is

P1 = −λ[−λ]2 (7.14)

λ = 0, 0, 0 (7.15)

When n = 2,

M2 =



0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 1 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0


(7.16)

The characteristic polynomial is

P2 = (−λ)(−λ)[−λP1 + P1
−λ

] = −[λ]2[λ+ 1
λ

]P1 = −λ[λ2 + 1]P1 (7.17)

λ = 0, 0, 0, 0, i,−i (7.18)

When n = 3,
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M3 =



0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0



(7.19)

The characteristic polynomial is

P3 = (−λ)(−λ)[−λP2 + P2
−λ

] = −[λ]2[λ+ 1
λ

]P2 = −λ[λ2 + 1]P2 = −λ5[λ2 + 1]2 (7.20)

λ = 0, 0, 0, 0, 0, i, i,−i,−i (7.21)

Similarly for any n, characteristic polynomial is

Pn = −λ[λ2 + 1]Pn−1 = [−1]nλn+2[λ2 + 1]n−1 (7.22)

So, for any n, λ’s are n+2 number of zeros,n -1 number of i and -i.

(c) upper diagonal chain=[0,0,1], lower diagonal chain=[-1,0,-1], diagonal chain=[0,0,0],
period of the chain (k) = 3 and chain length = nk.

When n = 1

M1 =


0 0 0
−1 0 0
0 0 0

 (7.23)

The characteristic polynomial is

P1 = −λ[−λ]2 (7.24)

λ = 0, 0, 0 (7.25)
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When n = 2,

M2 =



0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0


(7.26)

The characteristic polynomial is

P2 = (−λ)(−λ)[−λP1 + P1
−λ

] = −λ2[λ+ 1
λ

]P1 = −λ[λ2 + 1]P1 = λ4[λ2 + 1] (7.27)

λ = 0, 0, 0, 0, i,−i (7.28)

When n = 3,

M3 =



0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0



(7.29)

The characteristic polynomial is

P3 = (−λ)(−λ)[−λP2 + P2
−λ

] = −λ2[λ+ 1
λ

]P2 = −λ[λ2 + 1]P2 = −λ5[λ2 + 1]2 (7.30)

λ = 0, 0, 0, 0, 0, i, i,−i,−i (7.31)

Similarly for any n, the characteristic polynomial is
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Pn = −λ[λ2 + 1]Pn−1 = [−1]nλn+2[λ2 + 1]n−1 (7.32)

So, for any n, λ’s are n+2 number of zeros, n− 1 number of i and -i.

(d) upper diagonal chain=[0,0,1], lower diagonal chain=[1,0,1], diagonal chain=[0,0,0],
period of the chain (k) = 3 and chain length = nk.

When n = 1

M1 =


0 0 0
1 0 0
0 0 0

 (7.33)

The characteristic polynomial is

P1 = −λ[−λ]2 (7.34)

λ = 0, 0, 0 (7.35)

When n = 2,

M2 =



0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0


(7.36)

The characteristic polynomial is

P2 = (−λ[−λP1 + P1
λ

] = λ2[−λ+ 1
λ

]P1 = λ[−λ2 + 1]P1 = −λ4[−λ2 + 1] = λ4[λ2 − 1]
(7.37)

λ = 0, 0, 0, 0, 1,−1 (7.38)

When n = 3,
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M3 =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0



(7.39)

The characteristic polynomial is

P3 = (−λ)(−λ)[−λP2 + P2
λ

] = [λ]2[−λ+ 1
λ

]P2 = λ[−λ2 + 1]P2 = −λ5[λ2 − 1]2 (7.40)

λ = 0, 0, 0, 0, 0, 1, 1,−1,−1 (7.41)

Similarly for any n, characteristic polynomial is

Pn = λ[−λ2 + 1]Pn−1 = [−1]nλn+2[λ2 − 1]n−1 (7.42)

So, for any n, λ’s are n+2 number of zeros,n− 1 number of 1 and -1.

(e) upper diagonal chain=[0,0,1], lower diagonal chain=[1,1,0], diagonal chain=[0,0,0],
period of the chain (k) = 3 and chain length = nk.

When n = 1

M1 =


0 0 0
1 0 0
0 1 0

 (7.43)

Characteristic polynomial is

P1 = −λ[−λ]2 (7.44)

λ = 0, 0, 0 (7.45)

When n = 2,

Page 84 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

CHAPTER 7. APPENDIX 76

M2 =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


(7.46)

Characteristic polynomial is

P2 = (−λ)(−λ)[−λP1] = λ2[−λ]P1 = −λ3P1 = λ6 (7.47)

λ = 0, 0, 0, 0, 0, 0 (7.48)

When n = 3,

M3 =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



(7.49)

The characteristic polynomial is

P3 = (−λ)(−λ)[−λP2] = −λ3P2 = −λ9 (7.50)

λ = 0, 0, 0, 0, 0, 0, 0, 0, 0 (7.51)

Similarly for any n, the characteristic polynomial is

Pn = −λ3Pn−1 = [−1]n[λ]3n (7.52)

So, for any n, λ’s are 3n number of zeros.
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7.0.4 Error Analysis on more Examples

(1) upper diagonal chain=[0,0,1], lower diagonal chain=[1,1,1], diagonal chain=[0,0,0],
period of the chain (k) = 3 and chain length = nk.

When n = 1

M1 =


0 0 0
1 0 0
0 1 0

 (7.53)

The characteristic polynomial is

P1 = −λ(λ2) = (−λ)1+2(λ2 − 1)1−1 (7.54)

λ = 0, 0, 0 (7.55)

When n = 2,

M2 =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


(7.56)

The characteristic polynomial is

P2 = λ4(λ2 − 1) = (−λ)2+2(λ2 − 1)2−1 (7.57)

λ = 0, 0, 0, 0, 1,−1 (7.58)

When n = 3,
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M3 =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



(7.59)

The characteristic polynomial is

P3 = (−λ)2[−λ[λ4(λ2 − 1)] + λ[−λ(−λ3)− λ2]] (7.60)

The above equation can be written as

P3 = λ2[−λ(P2) + λ[−λ(P1)− λ2]] = λ2[−λ(P2)− λ2(P1)− λ3] = (−λ)3+2(λ2 − 1)3−1

(7.61)

λ = 0, 0, 0, 0, 1,−1 (7.62)

Similarly for any n, characteristic polynomial is

Pn = λ2[−λ(Pn−1)− λ2(Pn−2)− λ3] = (−λ)n+2(λ2 − 1)n−1 (7.63)

So, for any n, λ’s are (n+ 2) number of zeros and (n− 1) number of of 1 and -1.
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Figure 7.9: Eigenvalue error analysis-d=[0,0,0],u=[0,0,1],l=[1,1,1]

(2) upper diagonal chain= [i, 0, 0], lower diagonal chain= [i, 1, 1], diagonal chain =
[0, 0, 0], period of the chain (k) = 3 and chain length = nk.

When n = 1

M1 =


0 i 0
i 0 0
0 1 0

 (7.64)

The characteristic polynomial is

P1 = −[λ3 + λ] (7.65)

λ = 0, i,−i (7.66)

When n = 2,

M2 =



0 i 0 0 0 0
i 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 i 0
0 0 0 i 0 0
0 0 0 0 1 0


(7.67)

The characteristic polynomial is
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P2 = −λ[λ2(P1) + P1] = −[λ3 + λ]P1 = [−λ3 − λ]2 (7.68)

λ = 0, 0, i, i,−i,−i (7.69)

When n = 3,

M3 =



0 i 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 i 0 0 0 0
0 0 0 i 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 i 0
0 0 0 0 0 0 i 0 0
0 0 0 0 0 0 0 1 0



(7.70)

The characteristic polynomial is

P3 = −λ[λ2P2 + P2] = [−λ3 − λ]P2 = [−λ3 − λ]3 (7.71)

λ = 0, 0, 0, i, i, i,−i,−i,−i (7.72)

Similarly for any n, characteristic polynomial is

Pn = [−λ3 − λ]Pn−1 = [−λ3 − λ]n (7.73)

So, for any n, λ’s are n number of zeros, i and -i.
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Figure 7.10: Eigenvalue error analysis-d=[0,0,0],u=[i,0,0],l=[i,1,1]

7.0.5 Other Possible Approaches to Identify Eigenvalues after
(1, 1) Entry Perturbation

S Analysis

S(z) and R(z) are two polynomials in z which appear in the characteristic polynomial
recurrence relation of the tridiagonal k-Toeplitz matrix after (1, 1) entry perturbation. S
Analysis is an attempt to analyze how S(z) and R(z) polynomial values are related to
the eigenvalues of tridiagonal k-Toeplitz matrices after (1, 1) entry perturbation.

The first step of this method was to analyze the relation between |R − 1|/|S + 1|
values and eigenvalues of the tridiagonal k-Toeplitz matrix after (1, 1) entry perturbation.
Since the polynomial S(z) is a function of R(z), it is better to study how S values and
eigenvalues of the tridiagonal k-Toeplitz matrix after the (1, 1) entry perturbation are
related. The next step was to find if there is any relationship between the 2k points
which are not part of the continuous limiting set and their S values. In ds − dl graphs,
the X axis is |ds|2+|dl|2 where dl is the difference in neighboring builtin eigenvalues under
fixed perturbation and ds is the difference in corresponding S values. Then I checked
whether those eigenvalues which have the maximum change after the perturbation in the
(1, 1) entry, are corresponding to the S values which are not in the continuous curve.

S Analysis Figures

This is an attempt to check how builtin eigenvalues of tridiagonal k-Toeplitz matrix
is related to their S values.
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Figure 7.11: S-diagram: d = [0, 0, 0], l = u, u = [1, 2, 4], n = 20, perturbation in (1, 1) entry
= −1

Figure 7.12: difference : d = [0, 0, 0], l = u, u = [1, 2, 4], n = 20, perturbation in (1, 1) entry
= −1

Figure 7.13: S-diagram: d = [0, 0, 0], l = u, u = [1, 2, 4], n = 20, perturbation in (1, 1) entry
= 100
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Figure 7.14: difference: d = [0, 0, 0], l = u, u = [1, 2, 4], n = 20, perturbation in (1, 1) entry
= 100

Figure 7.15: S-diagram: d = [1, 2], l = u, u = [1,−3], n = 20, perturbation in (1, 1) entry = −1

Figure 7.16: difference: d = [1, 2], l = u, u = [1,−3], n = 20, perturbation in (1, 1) entry = −1

From the above graphs, we can interpret that the magnitude of the difference between
builtin eigenvalues after perturbation in (1, 1) entry and Chebyshev approximated eigen-
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values is maximum when |S| is not in the continuous curve. The same properties of |S|
vs eigenvalues after perturbation in (1, 1) entry are shown by |ds|2 + |dl|2 vs eigenvalues
after perturbation in (1, 1) entry graph.

R-S Analysis

Figure 7.17: RS diagram : d = [1, 2], l = u, u = [1,−3]pert = [3,−1], n = 20

Figure 7.18: RS diagram: d = [1, 2], l = u, u = [1,−3]pert = [5,−1], n = 20

Github link for my codes: link to github account

ds-dl Analysis

Analysis of the given below graphs lead to the following conclusion, when |ds|2+|dl|2 is
not in the continuous curve, the difference between Chebyshev approximated eigenvalues
and builtin eigenvalues after (1, 1) entry perturbation is maximum.
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Figure 7.19: ds-dl: d = [1, 2], l = u, u = [1,−3], perturbation in (1, 1) entry = 0.1, n = 20

Figure 7.20: difference : d = [1, 2], l = u, u = [1,−3], perturbation in (1, 1) entry = 0.1,
n = 20

Figure 7.21: ds-dl: d = [1, 2], l = u, u = [1,−3], perturbation in (1, 1) entry = −1, n = 20
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Figure 7.22: difference : d = [1, 2], l = u, u = [1,−3], perturbation in (1, 1) entry = −1,
n = 20

Figure 7.23: ds-dl: d = [1, 2], l = u, u = [1,−3], perturbation in (1, 1) entry= 10, n = 20

Figure 7.24: difference : d = [1, 2], l = u, u = [1,−3], perturbation in (1, 1) entry= 10, n = 20

2k-S Diagram
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The following graphs show how 2k points that are not part of the limiting set are
getting affected by (1, 1) entry perturbation. In the 2k − S diagram, S values of the 2k
points are plotted against the 2k points.

Figure 7.25: 2k-S-diagram: d = [1, 2], l = u, [1,−3], n = 20, perturbation in (1, 1) entry = 10

Figure 7.26: difference : d = [1, 2], l = u, u = [1,−3], n = 20, perturbation in (1, 1) entry = 10

Figure 7.27: 2k-S-diagram: d = [1, 2], l = u, [1,−3], n = 20, perturbation in (1, 1) entry = −1

Page 96 of 97

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

CHAPTER 7. APPENDIX 88

Figure 7.28: difference : d = [1, 2], l = u, u = [1,−3], n = 20, perturbation in (1, 1) entry = 1

We checked whether the 2k points that are not part of the continuous limiting set,
have the maximum change during perturbation, and we found that is not the case.
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