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Optical emission from emitters strongly interacting among themselves and also with other polarizable matter in
close proximity has been approximated by emission from independent emitters. This is primarily due to our in-
ability to evaluate the self-energy matrices and radiative properties of the collective eigenstates of emitters in
heterogeneous ensembles. A method to evaluate self-energy matrices that is not limited by the geometry and
material composition is presented to understand and exploit such collective excitations. Numerical evaluations
using this method are used to highlight the significant differences between independent and the collective modes
of emission in nanoscale heterostructures. A set of N Lorentz emitters and other polarizable entities is used to
represent the coupled system of a generalized geometry in a volume integral approach. Closed form relations
between the Green tensors of entity pairs in free space and their correspondents in a heterostructure are derived
concisely. This is made possible for general geometries because the global matrices consisting of all free-space
Green dyads are subject to conservation laws. The self-energy matrix can then be assembled using the evaluated
Green tensors of the heterostructure, but a decomposition of its components into their radiative and nonradiative
decay contributions is nontrivial. The relations to compute the observables of the eigenstates (such as quantum
efficiency, power/energy of emission, radiative and nonradiative decay rates) are presented. A note on extension of
this method to collective excitations, which also includes strong interactions with a surface in the near-field, is
added. © 2014 Optical Society of America

OCIS codes: (270.1670) Coherent optical effects; (270.6630) Superradiance, superfluorescence; (160.4236)
Nanomaterials.
http://dx.doi.org/10.1364/JOSAB.31.003153

1. INTRODUCTION
The interactions of atoms, fluorescing molecules, and quan-
tum dots with metal particles/surfaces have been extensively
studied for their effect on the decay rates and radiated power
of spontaneous emission [1–8]. But such understanding of the
effects of surrounding matter on spontaneous emission has
been limited to an independent emitter interacting with a sur-
face [3], particle [4], or a set of spherical particles [8], which
are generalized as the Purcell effect. Recently, this was ex-
tended by a theoretical study to a set of many emitters inter-
acting collectively with a single spherical metal particle at the
center [9,10]. Strongly interacting emitters present collective
excitations mediated by virtual photons, and in the presence
of other matter can include other virtual excitations as well,
for example, plasmons of a metal particle. We should expect
that when the interactions between a single emitter and a
body are not strong relative to the possible multilateral
modes, the collective effects can manifest robustly to be
observed and exploited. The impediment in understanding
collective heterogeneous systems has been the difficulty of
evaluating the self-energy components that include the pos-
sible virtual interactions among the emitters. The spontaneous
emission from a completely isolated emitter is caused by
vacuum fluctuations, while virtual interactions with other
proximal matter can change both decay rates and the energy

of emission. The effects of such virtual interactions on the
spontaneous emission in an emitter-body system or an ensem-
ble of emitters are typically well represented by coupled os-
cillators that radiate the quantum of energy each [8–10]. In a
general heterogeneous ensemble, the evaluation of Green ten-
sors coupling emitters in the presence of all other polarizable
matter in proximity becomes necessary in this approach.
Special cases of nonclassical emission, where the above
method may need modifications, are discussed later.

The diagonal terms of the self-energy matrices of such a
heterogeneous system include the independent emitters inter-
acting with other bodies, and these are represented by the
self-field of the single emitter due to other polarizable bodies
[11]. Whereas the off-diagonal terms of the self-energy matrix
include the interactions among any two emitters directly and
through other matter in proximity, here we require these
Green tensors explicitly. Note that analytical expressions
for Green tensors are difficult in general [11], and a numerical
evaluation of Green tensors is a preferred approach for com-
plex geometries. Mode decomposition and eigenfunction-
based Green-tensor representation is suitable for regular
geometries; however, it is seldom a possibility in realistic
nanostructures. We start with a set of n-Lorentz dipole oscil-
lators, which when coupled can be used to elucidate the con-
ventional Dicke effect of collective emission and the radiative
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coupling among them. In addition, here we have m other po-
larizable entities, which can be sub-volumes of a larger body
in a volume integral approach. Thus this method is general
and precise for arbitrary shapes, properties, and a number
of emitters/bodies, even in the limits where long wavelength
approximations are not valid. It is shown that a problem posed
by dipole sources and null field conditions at polarizable vol-
umes can be used to evaluate the modified Green tensors cou-
pling the n emitters in presence of the m other polarizable
entities. We use matrix algebra to derive closed-form relations
between these modified Green tensors and the set of Green
dyads coupling pairs of the N (where N � n�m) entities
in free space (or a homogeneous background). The free-space
Green dyads of dipolar entities can be trivially derived by the
dyadic operations on scalar Green functions of point dipoles.
Use of free space dyads of multipoles to avoid a fine discre-
tization of a body into dipoles is also possible for very large
problems. The modified Green tensors coupling the emitters
are then used to assemble their self-energy matrix and evalu-
ate their eigenstates. Determining the characteristics of emis-
sion from the ensemble involves the additional exercise of
decomposing the imaginary part of the self-energy matrices
into their radiative and nonradiative parts. This allows us
to evaluate the quantum efficiency, decay rates, and the radi-
ated energy/power in the ensemble given the quantum effi-
ciency and nonradiative relaxation of an isolated emitter.
The microscopic aspects in dipole representations of certain
types of emitters [12,13] and an explicit quantization of the
emitter/bodies [14–17] are not the subject of this work, and
these may be introduced in this method without loss of gen-
erality for any special cases.

Finally, we conclude with a few numerical results highlight-
ing that self-energy matrices of such interacting systems can
reveal collective effects hitherto unexplained. Some of our
recent experimental observations and their analysis will be
described elsewhere. Additions to this method that can in-
clude strong interactions of all the N entities with a surface
are presented in Appendix B.

2. METHODS
Consider the excitations in independent emitters as oscillating
dipole moments with a resonant frequency ωo. It is assumed
that nonradiative relaxations at a decay rate Γnr

o and uncorre-
lated emission events at a decay rate Γr

o occur in these
individual emitters, and they are much slower than the oscil-
lations, i.e., Γr

o ≪ ωo, and we use classical Lorentz oscillators
to represent the excitations. This section has three parts. First
self-energy matrices of a collection of coupled Lorentz oscil-
lators and their significance in studying collective behavior in
an emission process are discussed. Then this approach is ex-
tended to the evaluation of the self-energy matrices for cases
where the emitters also interact strongly with other matter.
This primarily involves evaluating the Green tensors coupling
the emitters in the presence of other polarizable matter in a
generalized geometry. Finally we proceed to a technique to
decompose the radiative and nonradiative contributions to
each self-energy component of the self-energy matrix repre-
senting a heterogeneous mixture of emitters with other polar-
izable bodies. This is essential because the radiative and
nonradiative decay matrices determine the observables and
measurements of the collective emission.

A. Self-Energy Matrix of Coupled Lorentz Oscillators
The emission from n dipole oscillators interacting with each
other is well represented by a coupled system with n eigen-
states, some of which are super radiant, and this collective
phenomenon of emitters interacting directly is known as
the conventional Dicke effect [18–21]. The mechanical force
of an oscillating dipole moment, Pj�t�, and the force of driving
fields from the other Lorentz dipoles, Fjk�t�, have to be bal-
anced. This results in Eq. (1), where derivatives with respect
to time t are represented by the corresponding number of dots
in the superscript:

�P̈j�t� � Γr
o
_Pj�t� � ω2

oPj�t�� −
q

m

X
k≠j

Fjk�t� � 0: (1)

Let Pjej be the known dipole moment amplitudes of the
interacting Lorentz oscillators with unknown cooperative
phases ϕj , and let q, m be the magnitude and mass of the
charge in the dipoles. We derive the shifts in energy Δ
and the modified decay rates Γ of the interacting ensemble
due to additional components of self-energy of these emitters
immersed in their common field. In the above, the interaction
between dipoles can be described in terms of the free-space
Green dyads Go (a tensor of orientation dependent Green
functions), where �4πω2∕c2� ·Go�r;rj;ω� ·ejPj�ω�eiϕj �E�r;ω�,
the harmonic component of the electric field at r due to
an isolated dipole moment Pjej at rj . The above relations
for coupled Lorentz oscillators can then be rewritten into
the following after factoring out eiωt:

�ω2
o − ω2 � iΓr

oω� · Pj�ω�eiϕj
−

X
k≠j

4πω2q2

mc2
ej

·Go�rj ; rk;ω� · ekPk�ω�eiϕk � 0: (2)

For all ω ≈ ωo; it simplifies to�
ωo − ω� iΓr

o

2

�
· Pj�ω�eiϕj

−

X
k≠j

2πq2ω

mc2
ej

·Go�rj ; rk;ω� · ekPk�ω�eiϕk � 0: (3)

Specifically, the Green dyads Go�rj ; rk;ω� of the point
dipole oscillators in free space (or a homogeneous medium
with permittivity ε) can be derived from the following,
where the wave number k � ���

ε
p

· ω∕c and c is the speed of
light:

∇ × ∇ ×Go�r; rj;ω� − k2Go�r; rj;ω� � Iδ�r − rj�: (4)

By substitution of Δjk and iΓjk∕2 for the real and imaginary
parts of the dipole cross-interaction terms (j ≠ k) in Eq. (3),
we get Eq. (5) after a phase conjugation. The system of equa-
tions reduces to a form where the energy shifts and modified
decay rates of a dipole due to its interaction with other dipoles
can be readily interpreted:

X
k

��
ωo − ω −

iΓr
0

2

�
δjk � Δjk −

iΓjk

2

�
· Pk�ω�e−iϕk � 0: (5)

Let

3154 J. Opt. Soc. Am. B / Vol. 31, No. 12 / December 2014 M. Venkatapathi



Σjk � Δjk −
iΓjk

2
� −2πq2ω

mc2
ej ·Go�rj ; rk;ω� · ek − δjk

iΓr
0

2
(6)

⇒
X
k

��ωo − ω�δjk � Σjk

�
· Pke

−iϕk � 0: (7)

It is convenient to represent the coupled system of equa-
tions by the matrix eigenvalue problem in Eq. (7). The
unknown cooperative phases ϕj for the known oscillating di-
pole moments Pj are given by the collective eigenstates of the
oscillators that are solutions for Eq. (7). These eigenstates are
represented by the eigenvalues and eigenvectors of the self-
energy matrix Σ. A set of radiating coupled Lorentz oscillators
with known starting phases ϕj and initial dipole-moment
amplitudes Pj are equally well represented by the self-energy
matrix in Eq. (6), as shown elsewhere [10]. The real part of its
eigenvalues represents the energy shifts of a collective
eigenstate, and corresponding decay rates are given by its
imaginary part. Thus they represent a system of coupled equa-
tions that are fully satisfied by �−λI � Σ�V � 0, where λ are
the eigenvalues and V is the set of eigenvectors representing
the eigenstates. Calculation of eigenvalues of Σ�ωo� may be
sufficient in some cases to determine modified decay rates
and shifts of emission energies when Γr

o ≪ ωo. A weighted
numerical integration of Σ�ω� is also straightforward (and
the diagonal term representing radiative decay of an emitter
in a vacuum can be added after this integration). Thus we in-
clude the relevant energy spectrum only where the Lorentzian
dipole moments P�ω� are significant, as given in Eq. (9), where
Po is the initial dipole moment. Further, the excitations of
dipole oscillators are given the total energy of a quantum
of radiation:

Γr
o �

2 kq2ωo

3 mc2
� 2 k3P2

o

3εoℏ
and

Po

q
�

�
ℏ

mωo

�
1∕2

; (8)

where

P�ω� � Po

4π
Γr
o

�ωo − ω�2 � �Γr
o∕2�2

: (9)

The interaction with another emitter results in energy shifts
given by the real parts of the off-diagonal terms of the self-
energy matrix, and the corresponding change in decay rates
are given by the imaginary parts. The diagonal terms of the
self-energy matrix represents the case of the independent
or the uncoupled emitter and contains only its radiative decay
rate. Energy shifts (or a change in resonant frequency to
ω ≠ ωo) appear even for the independent emitter when it in-
teracts with other bodies, as seen in the next section. Energy
shifts in the emission can be interpreted as an equivalent shift
in the ratio of the electrical self-interaction and mass of the
dipole emitters. In the theoretical approach so far, internal
nonradiative relaxations of the dipole emitters have not been
included, and these can be explicitly added in the diagonal
terms of Σ just as the radiative decay rates of the independent
emitter [see Eq. (23)]. This involves the assumption that inter-
nal nonradiative relaxation of an emitter is independent of its
radiative decay. Thus, using a harmonic oscillator to represent
the single quantum of emission has been the typical approach.
Alternately, the Lorentz oscillators can be assigned an energy

that includes both the radiative and nonradiative decay of the
emission. This allows for the inclusion of nonradiative
interaction of two oscillators in proximity and the total
mechanical energy of the oscillator increases by a factor
1∕Qo while the radiative decay includes only a quantum of
energy as in Eq. (10). Note that in this case Lorentz factors
will include the total decay rates Γo instead of Γr

o used above.
The method presented in this paper is amenable to both def-
initions of the oscillators. The latter are useful in cases where
emitters are also coupled nonradiatively and when dipole–
dipole interactions are sufficient to model this nonradiative
coupling:

Γr
o �

2 kq2ωo

3 mc2
� 2Qok

3P2
o

3εoℏ
and

Po

q
�

�
ℏ

Qomωo

�
1∕2

; (10)

and Qo �
Γr
o

Γr
o � Γnr

o

and Γr
o � Γnr

o � Γo: (11)

Further, the above description of the collective emission
process is restricted by only certain cases where the number
of excitations participating in the collective emission process
is not small compared to the number of optical states at en-
ergy ∼ℏωo, which is typically large. This situation is possible
inside micro-cavities and photonic crystals when specifically
the emission energies are near the edges of a band gap [22],
and a strong excitation includes a sufficient density of such
emitters in this emission process. Also, a set of emitters
can coherently share fewer excitations resulting in emissions
of a higher decay rate [23]. Such special cases of nonclassical
emission may require a more explicit quantization of the field
or the individual components of the self-energy matrix, and
fortunately, do not include a wide variety of heterogeneous
optical materials and their emission.

B. Evaluation of Green Tensors and Self-Energy
Components of a Heterostructure
When emitters are neither in vacuum nor in a homogeneous
dielectric medium and interact with other polarizable bodies
in proximity, evaluation of the Green tensors coupling them is
nontrivial. Using a volume integral approach, a heterogeneous
volume can be represented by sub-volumes with correspond-
ing permittivity. In the presence of m other polarizable vol-
umes, much smaller than the wavelength in dimensions, the
Green dyads are determined using the following Maxwell’s
equation for a heterostructure in a homogeneous background
medium:

ω2ε�ω�E�r;ω�−c2∇×∇×E�r;ω�

�−4πω2

(Xn
j�1

Pj�ω�ejδ�r−rj��
XN�n�m

j�n�1

ᾱj�ω�δ�r−rj�E�r;ω�
)
:

(12)

Here, ᾱj and ε are the polarizability tensor of volume j and
the permittivity of the homogeneous background, respec-
tively. An analytical solution of this discrete problem, with
or without solving for these modified Green dyads, is an
intractable problem in general. But the free-space Green
dyads of point dipoles can be derived from Eq. (4) using
outgoing spherical scalar waves from a point source in a
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homogeneous infinite medium (with permittivity ε) as given
below:

Go�rj ; rk;ω� �
�
Ī� c2∇∇

ω2

�
g�R�

where g�R� ��4πR�−1 exp
�
i
ω

���
ε

p
c

R

�
; R � ‖rj − rk‖; (13)

when the background medium is isotropic [with permittiv-
ity ε�r ≠ rj� � ε].

Using the above, solutions of Eq. (12) can be rewritten into
a problem of N oscillators coupled by Go�rj ; rk;ω�, the Green
dyad in the homogeneous background medium. These are

4πω2

c2
Ḡo · P � E; (14)

where

Ḡo�

2
6666666666664

Ḡee
o �j;k��Go�rj ;rk;ω�

j;k�1…n

size:3n×3n

j
j
j

Ḡeb
o �j;k��Go�rj ;rn�k;ω�
j�1…n;k�1:m

size:3n×3m
−−−−−−−−−− − −−−−−−−−−−−−

Ḡbe
o �j;k��Go�rn�j ;rk;ω�
j�1…m;k�1…n

size:3m×3n

j
j
j

Ḡbb
o �j;k��

Go�rn�j ;rn�k;ω�−δjkᾱ−1n�j�ω�
j;k�1…m and size:3m×3m

3
7777777777775
;

P�

2
666664

Pe

3n×1
−−−

Pb

3m×1

3
777775�

2
666664

Pe
j

j�1…n
−−−−−−

Pb
j

j�n�1…n�m

3
777775;

E�

2
666664

Ee

3n×1
−−−

Eb

3m×1

3
777775�

2
666664

Ee
j

j�1…n
−−−

0

j�n�1…n�m

3
777775: (15)

Writing such global matrices containing the Green dyads
coupling, each pair of entities gives us a concise representa-
tion but, more importantly, helps unravel the implicit relations
between Green dyads required to satisfy the conservation
laws. The global matrix of Green dyads Ḡo can be decom-
posed further into four parts: Ḡee

o , direct interaction between
pairs of emitters; Ḡbb

o , interaction among the pairs of m polar-
izable bodies; and Ḡeb

o ; Ḡ
be
o , representing the interaction

between an emitter-body pair, which are transposes of each
other (as the individual Green dyads are symmetric). Ḡbb

o has
its diagonal dyads constituted by −ᾱ−1 while Ḡee

o has zeros in
diagonal dyads correspondingly for the self-interaction terms
(radiation reaction and nonradiative loss) of the independent
emitter. Γo can be conveniently included in the self-energy
matrices as in Eqs. (22) and (23), which are shown later.
The polarizability tensor ᾱ can be corrected for sub-
volumes of a contiguous large body using lattice dispersion
relations if required [24]. Such finer volume discretization
of a body is needed if its dimensions are not much smaller
than the wavelength of emission. This limit becomes more

stringent if two distinct bodies are closely spaced, for exam-
ple, when distance between centers → 2a, where a is the ra-
dius of a spherical particle. We will revisit multipolar
representations of a body later in the paper. Otherwise polar-
izability of a distinct particle much smaller than the wave-
length is well approximated by its dipole polarizability. In
case of an isotropic material this reduces to

αj�ω� � a3
�
ε�ω; rj� − ε

ε�ω; rj� � 2ε

�
; (16)

where a is radius of particle.
In the above problem, the polarizations of the m bodies Pb

and the collective self-fields at the n emitters Ee are unknown,
but these do not have to be explicitly solved for. The required
Green dyads can be implicitly derived by rewriting the prob-
lem in terms of the required global matrix of green dyads Ḡee,
coupling pairs of the n emitters in this heterostructure, and
resulting in these collective self-fields Ee. This matrix should
contain the required sum of the Green dyad in a background
homogeneous medium and its perturbationGh�rj ; rk;ω� by the
heterostructure, ordered by the block indicated definition in
Eq. (15):

4πω2

c2
Ḡee · Pe � Ee; (17)

where Ḡee�j; k� � Go�rj ; rk;ω� �Gh�rj ; rk;ω� for j; k � 1…n.
Using matrix block multiplications, from Eq. (15) we get
the following two relations in Eqs. (18) and (19). The first
is the momentum conservation relation that has to be satisfied
by self-fields Ee of point emitters as an optical theorem [25],
and the second is the null-field condition for the polarizable
bodies:

4πω2

c2
�Ḡee

o · Pe � Ḡeb
o · Pb� � Ee; (18)

4πω2

c2
�Ḡbe

o · Pe � Ḡbb
o · Pb� � 0: (19)

Removing Pb in the above relations and substituting the re-
sult in Eq. (14), we get the global matrix with the modified
Green dyads between pairs of emitters in the presence of
the other polarizable bodies in this heterostructure:

Ḡee � Ḡee
o − Ḡeb

o · �Ḡbb
o �−1 · Ḡbe

o : (20)

Ḡee has ordered dyads G�rj ; rk;ω� � Go�rj ; rk;ω��
Gh�rj ; rk;ω� for j; k � 1…n, and these are used instead of
Go�rj ; rk;ω� in Eq. (9) to assemble the self-energy matrices.

Note that the diagonal entries of Ḡee in Eq. (20) are nonzero,
unlike its free-space correspondent Ḡee

o . These represent the
additional self-interaction of the independent emitter due to
other polarizable matter in proximity. But it is important to
note why this method is significantly different from computing
the modified Green dyads using a sum of all possible paths of
interaction between two emitters in a heterostructure, which
is the most obvious evaluation given all the Green dyads of
free space or a homogeneous background. First, the total
number of possible paths of interaction between two emitters
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in an m body heterostructure is large, C
	
m

l



for a subset of l

bodies. Evaluation of the resulting vector and phase for each
of these paths includes (4 · 33 · l) multiplication operations—
(4 · 33) operations in the case of multiplying any two three-
dimensional Green dyads in complex number arithmetic.
Correspondingly, the number of arithmetic operations in
evaluating the perturbations to free-space Green dyads is
large, ∼Σm

l�14 · 3
3 · l · C�m

l
� > 2m, an idea useless for m ≫ 1.

On the other hand, an evaluation using Eq. (20) involves 4 ·
33m3 multiplication operations at most. For m ∼ 104, repeat-
ing such evaluations is possible today even with a personal
computing device. A physical interpretation of Eq. (21) is thus
meaningful, and this perturbation to the global matrix contain-
ing free-space Green dyads can be rewritten as a minimization
problem shown below. This results from interpreting the in-
verse of a matrix A as projector into a vector space (Krylov
subspace) of a minimum monic [implies co � 1 in Eq. (21)]
polynomial of matrix A, expanded in the powers of the matrix
Ḡbb

o as below [26]:

Ḡeb
o · �Ḡbb

o �−1 · Ḡbe
o � minpm∈Pm

‖Ḡeb
o · pm�Ḡbb

o � · Ḡbe
o ‖

� min ‖coḠeb
o · Ḡbe

o � c1Ḡ
eb
o · �Ḡbb

o � · Ḡbe
o

� c2Ḡ
eb
o · �Ḡbb

o �2 · Ḡbe
o � � � � � cmḠ

eb
o

· �Ḡbb
o �m · Ḡbe

o ‖; (21)

where pm represents a polynomial of degreem and the full set
of such possible polynomials is Pm. Thus pm�Ḡbb

o � includes all
powers of the global matrix of Green dyads coupling the
bodies, and note that �Ḡbb

o �l contains the resulting dyads of
all the possible l interaction paths between them. Even paths
involving more than m interactions are implicitly included as
they are anyway linear combinations of the above paths.
Hence, Eq. (21) represents a minimum of sum over all paths
of interaction between any pair of emitters, and this method is
thus equivalent to a Lagrangian solution of the problem.

C. Radiative and Nonradiative Contributions to
Self-Energy Components
The radiative and nonradiative parts of this collective emis-
sion have to be determined for a comparison with experimen-
tal measurements of the radiative properties and decay rates.
The nonradiative losses of a collective mode of emission
depend on the interactions of the emitters through the
other bodies in addition to their internal nonradiative relaxa-
tions. The nonradiative absorption of an isolated body signifi-
cantly smaller than wavelength is well approximated by
I�ᾱ�rj�E	�rj� · E�rj�� and depends only on the imaginary part
of ᾱ [27]. Here, the contributions of the imaginary parts of ᾱ
(of all the interacting polarizable bodies) to the self-energies
of interaction between any two emitters have to be decom-
posed. In the m body system, these components contain both
the real and imaginary parts of polarizability, as radiative
interactions among bodies can precede a nonradiative loss.
The radiative contributions of an isolated small body involve
the real part and magnitude of its ᾱ, i.e., only the real part of its
ᾱ−1. Thus we have two components to the imaginary part of
self-energy matrix Γjk, one that involves the imaginary part of
ᾱ−1 of a body as a factor in the self-energy components, and
the exclusion that represents the radiative contributions from

all interacting bodies. These are represented by the nonradia-
tive decay matrix Γnr

jk and the radiative decay matrix Γr
jk, re-

spectively. Evaluation of the radiative or nonradiative decay
of collective eigenstates requires such a decomposition of
self-energy matrix, as a function of the specific geometry
defined by the global matrix of Green dyads. Using matrix
decomposition identities for the inverse of sum of two full-
rank matrices, we can derive these nonradiative and radiative
parts of the total self-energy matrix as given below, where
diagonal terms −δjkiΓr

o∕2 and −δjkiΓnr
o ∕2 are included after

integration over frequencies around ωo. Let

Σr
jk�Δr

jk −

iΓr
jk

2
�−2πq2ω

mc2
ej ·Gr�rj ;rk;ω� ·ek−δjk

iΓr
o

2
; (22)

Σnr
jk � Δnr

jk −

iΓnr
jk

2
� −2πq2ω

mc2
ej ·Gnr�rj ; rk;ω� · ek − δjk

iΓnr
o

2
;

(23)

where the required Green dyads are

Gr�rj ; rk;ω� � Ḡr�j; k� and

Gnr�rj ; rk;ω� � Ḡnr�j; k� for j; k � 1…n: (24)

The required radiative and nonradiative Green dyads and
their corresponding global matrices in Eq. (24) can be derived
using a decomposition of Ḡbb

o containing the imaginary and
real part of polarizability as in Eqs. (25) and (26). Our objec-
tive here is to evaluate the corresponding contributions to
�Ḡbb

o �−1 and the Green dyads coupling emitters, Ḡee in
Eq. (20). These result in the radiative and nonradiative global
dyads of Eq. (24) evaluated by Eqs. (28) and (29). We decom-
pose the global matrix of Green dyads coupling the polariz-
able bodies into

Ḡbb
o � Ḡbb1

o � Ḡbb2
o ; (25)

where

Ḡbb1
o �j; k� � Go�rn�j ; rn�k;ω� − δjkR�ᾱ−1n�j�ω��;

Ḡbb2
o �j; k� � −δjkI�ᾱ−1n�j�ω�� for j; k � 1…m; (26)

when

�Ā� B̄�−1 � Ā−1
− �Ī� Ā−1B̄�−1Ā−1B̄Ā−1; (27)

Ḡr � Ḡee
o − Ḡeb

o · �Ḡbb1
o �−1 · Ḡbe

o ; (28)

Ḡnr � Ḡeb
o · fĪ� �Ḡbb1

o �−1 · Ḡbb2
o g−1 · �Ḡbb1

o �−1 · Ḡbb2
o · �Ḡbb1

o �−1 · Ḡbe
o :

(29)

Γnr
o , the nonradiative relaxation of the independent emitter,

can be explicitly introduced in the self-energy and nonradia-
tive decay matrices, and we assume the quantum efficiencyQo

and radiative rate of an independent isolated emitter Γr
o are its

only known properties other than ℏωo. Note that diagonal en-
tries of the self-energy matrix in Eqs. (22) and (23) include the
explicitly added decay rates of the independent emitter as its
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imaginary parts, and in addition, the evaluated decay rates and
the energy shifts due to the other bodies in proximity, i.e., the
Purcell effect on independent emitters. When Ḡbb2

o is not a
full-rank matrix because one or more of the m polarizable
volumes have I�ᾱ� � 0̄, Eq. (27) can be replaced by other
matrix decomposition identities. Similarly, note that Ḡbb1

o is
invertible when all the real parts of polarizability of the bodies
are nonzero and has the same requirement in such special
cases otherwise. Formulae for inverting a sum of an invertible
and a rank one matrix can be recursively used where matrix B̄
in �Ā� B̄�−1 need not be invertible and of low rank [28–30].
Similarly, matrix deflating techniques are also possible when
the real or imaginary part of the polarizability of some of the
bodies is zero, and these methods can be found elsewhere
[31]. As explained in Section 2.A, the eigenstates J and their
decay rates are given by the normalized eigenvectors and the
eigenvalues of Σ, respectively, as in Eq. (30). The real parts of
eigenvalues are the energy shifts ΔJ and its imaginary part is
half the decay rate ΓJ∕2. The radiative decay rate Γr

J is given
by the vector–matrix–vector product J†ΓrJ described by the
state representation in Eq. (31):

ΣjJi � ΔJ −
iΓJ

2
jJi; (30)

Γr
J � hJjΓr jJi: (31)

The normalized quantum efficiency Qh and power of emit-
ters Ph in the heterostructure are given by the sum over the
corresponding values of eigenstates as below [10]:

Qh � 1
n

X
J

QJ and Ph �
X
J

QJΓr
J ; (32)

where

QJ � Γr
J

Γr
J � Γnr

o

: (33)

Note that in the above definitions of Q, which indicate ef-
ficiency of the emitters, we have not included the nonradiative
decay of a part of this emission in the metal particles. An
alternative definition that includes this absorption loss in
the metal particles should have ΓJ , the total decay rate of
the eigenstate J as the denominator in Eq. (33). The total rate
of decay from an ensemble of heterostructures as observed by
lifetime measurements can be traced using the energy radi-
ated by all eigenstates. In determining the power and tracing
the decay as in Eqs. (33) and (34) note that we do not evaluate
the decay of a specific initial state in a particular geometry of
heterostructure. That requires expanding the prepared initial
state using a weighted sum of the eigenstates, and this is not of
relevance in experiments where initial states of the system are
unknown and random (due to the nonradiative process that it
accompanies). Alternately, we can determine the eigenstates
for all possible random permutations in a heterostructure
along with random orientations of its dipole emitters. Once
the collective eigenstates of a particular geometry are deter-
mined, we sum the emitted power and the decay of all its
eigenstates. These quantities represent an average of these
observables over the full phase space of possible initial states

in the geometry, which are further averaged over random
geometries. These results can be directly compared to exper-
imental measurements involving a large ensemble of such
structures:

I�t� �
X
J

QJe
−Γj t: (34)

Before we present numerical results of this evaluation, we
conclude this section with a note on few limiting cases and the
corrections required. The limits of the dyadics of point dipoles
used and the effects of discretization of a body have to be dis-
cussed. This method is general enough to include arbitrary,
local volume discretization of a body in multiple scales for
problems with any special cases. One such case is when
two small bodies are closely spaced and a finer discretization
of the body is required to include multi-pole interactions, for
example, when distance between centers → 2a, where a is
radius of a spherical particle. To include l pole effects suffi-
ciently, a finer discretization of a body in dipolar representa-
tion scales the global matrices by l3 in general, and thus
computation by �l3�3 � l9. Explicit use of higher-order Mie
modes of a sphere, its l pole polarizability αl, and its Green
dyads in the discretized representation of geometry to be
evaluated is also possible for large spherical sub-volumes.
For if more Green dyads of modes up to l for any polarizable
volume are explicitly included in the global matrix in Eq. (15),
the matrix dimensions increase by a factor of only l and this
will result in an increase in computation by a factor of only l3.
Also, one should expect that when the distance between the
surface of a body and an emitter is on the order of charge sep-
arations d � p∕q, an evaluation using the dyads of point
dipoles in Eq. (13) may be not accurate. At these small
separations ∼1 nm, charge screening in the body may not
be complete, local inhomogeneity of ε̄ may not be negligible,
and electron-hole pairs can be created. Such energy transfer
mechanisms can result in coupling on the order of ∼r4 and
higher, which may not be represented sufficiently by finer dis-
cretization of the body alone. However, studies show that
these local deviations are significantly suppressed by both
nonlinear effects and quantization, resulting in a freezing of
higher-order classical modes [32]. These effects can result
in a domination of the radiative terms on the interaction with
the polarizable matter even at these close separations [33,34].
Nevertheless, corrections to Go�rj ; rk;ω� for these mecha-
nisms of interaction may be included for emitter-body separa-
tions less than 1 nm in any special cases. Modifications
required to Go�rj ; rk;ω�, in case of a strongly interacting sur-
face in the near-field of the heterostructure, are presented in
Appendix B.

3. EXAMPLES AND NUMERICAL RESULTS
This section presents numerical results to highlight the signifi-
cance of collective emission characteristics possible when
multiple emitters interact with multiple bodies. Numerical
evaluations of collective eigenstates of emission from emit-
ter-metal nanoparticle ensembles were performed. We com-
pare the results of the method presented here (named NS)
with two other evaluations of the same structures: (1) indepen-
dent emitters interacting with multiple metal particles (named
IE for independent emitters) and (2) a set of emitters
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collectively interacting with many independent metal par-
ticles where interaction among metal particles is ignored
(named EPS, for extended Pustovit–Shahbazyan model ex-
plained in Appendix A). The objective is to highlight that while
the differences with the former show the significance of col-
lective modes of emission in such heterostructures, the
differences with the latter emphasize that the collective
modes of emitters are sensitive to an increase in local density
of optical states (LDOS) due to interactions among many
metal particles. Moreover, these results are shown to be ap-
proximated by (1) a case where coupling among the emitters
is weak relative to the available LDOS and (2) a case of inter-
action of the collection of emitters with one or a few metal
particles.

Consider a structure where the emitters are randomly dis-
tributed inside a cylinder of radius 20 nm and height 40 nm,
while the metal particles are all randomly distributed outside
this cylinder; see Fig. 1. The position vectors rp of the metal
particles represent a random normal distribution in R2 with a
mean distance of 35 nm from the axis of the cylinder (and a
standard deviation of 4 nm). The distribution of these particles

Fig. 1. Sketch of the heterostructure (not to scale). In G1 blue
spheres represent the dipole emitters and the red spheres represent
metal particles, and vice versa in G2.
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Fig. 2. (a) Ensemble averages of power enhancement in G1. (b) Ensemble averages of power enhancement in G2. (c) Eigenstates of decay rates
and emitted power for one example case in the ensemble of 150 evaluations. J represents individual emitters in the case of IE evaluation, and the
eigenstates in the other two evaluations, and (d) ensemble averages of the normalized quantum efficiency of heterostructures as a function of
quantum efficiency Qo of isolated emitters for n � m � 20 in G1.
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in z direction (parallel to the axis of the cylinder) is a random
uniform distribution inR1. ej are unit vectors of a random uni-
form distribution inR3 representing the emitter polarizations.
The position vectors re of the emitters represent a different
random uniform distribution in R3 throughout the interior
space of the cylinder. Such ordered self-assembled films
consisting of quantum dots and metal particles are in fact

studied experimentally [7]. This geometry is named G1, and
an inversion of such distributions where the emitters are out-
side the cylinder while metal particles are inside is named G2.

Using the computed collective eigenstates, the results pre-
sented include the power enhancements evaluated, relative
decay rates, quantum efficiencies, and time traces of decay
using Eqs. (30)–(34). The results produced here involve gold
spheres 3 nm in radii and dipole emitters with ℏωo � 2.21 eV
(that corresponds to a free-space wavelength of∼560 nm). We
also assume that this heterostructure is embedded in a
medium with relative permittivity ε∕ε0 � 2.25 to represent
realistic polymeric materials. Isolated emitters are assumed
to have quantum efficiency of 1∕6; and as shown later Qo

has an almost linear effect on the quantum efficiency of the
heterostructure and there is no loss of generality. The power
of emission, due to a continuous excitation, and the lifetimes
are the typically measured variables in an experimental study
of characteristics of emission. Figure 2(a) shows the power
enhancement in the G1 heterostructure relative to an equal
number of isolated emitters; there are two clear regimes ap-
parent in this plot. These results are ensemble averages over
150 random permutations of the emitters and metal particles.

First, in the limit of a few metal particles (m ≤ 10), the
full evaluation (NS) matches with the EPS evaluation of m
independent metal particles interacting with the collection
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Fig. 3. Normalized time traces of decay representing 40 dipole emit-
ters with varying numbers (0, 40, 80) of 3 nm radii gold particles in a
G1 heterostructure ensemble: ℏωo � 2.21 eV, Qo � 0.5, and Γr

o �
1∕2 × 109 rad∕s for the isolated emitters in the film.
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Fig. 4. Ensemble values of power enhancement in G1 for m � n � 20. (a) EPS, independent metal particles; (b) IE, independent emitters; and
(c) NS, interacting emitters and metal particles. (d) Example distribution of 80 metal particles in the XY plane of G1.
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of emitters. Here the collective interaction among emitters re-
sults in a significant increase in the power enhancement, and
this is not revealed in the independent emitter (IE) character-
istics. As the number of particles increases further (m ≥ 60),
strong interactions among metal particles can result in a large
increase in LDOS, which breaks the accuracy of the EPS
evaluation. This regime is dominated by the LDOS available
to the emitter, and the interactions between emitters seem
to play a weaker role compared to the interactions between
the metal particles.

In the inverted complementary structure G2, the interaction
between the emitters that are spread outside the cylinder is
expected to be weaker. But the interaction among the metal
particles is more significant here and the increase of LDOS has
a larger effect on the power of emission. Thus the collective
excitation regime of the emitters seems to have a smaller para-
metric range and is of lesser significance than in G1 as shown
in Fig. 2(b). However, one should be cautioned that power
enhancement is not a sufficient indicator of the underlying
emission process. The lifetimes measured in such heterostruc-
tures are governed by the collective eigenstates, as shown
in the example shown in Fig. 2(c). The above results in
Figs. 2(a)–2(c) were all evaluated for isolated emitters having
a quantum efficiency of 1∕6. However, Fig. 2(d) shows that a
change in the quantum efficiency of isolated emitters does not
change the conclusions above. Ensemble averages of m �
n � 20 in G1 are evaluated over a range in Qo to show its al-
most linear effect on the normalized quantum efficiency of the
heterostructure Qh in Eq. (32). The apparent lifetimes mea-
sured in such heterostructures can be significantly dominated
by the slower eigenstates of the collective excitation and show
notable differences with an isolated emitter interacting with
the metal particles. Figure 3 shows emission dynamics for
a few cases that use the calculated eigenstates and Eq. (34)
to trace the decay of the collective excitations. Emitters of
even moderate quantum efficiency (Qo � 0.5) show a clear
shift in the decay curves of their collective emission. Their
apparent decay seems to become slower with time, which
is an effect of multiple eigenstates.

In all the above calculations, raw data of the ensemble
show approximate normal distributions confirming that the
mean values represent the general behavior of a heterostruc-
ture (G1 or G2) for a specific case ofm, n. The raw data of one
such ensemble are shown in Fig. 4. As expected, IE and NS
evaluations have marginally larger standard deviations in
the ensembles due to their higher sensitivity to the permuta-
tion of metal-particle locations. We have limited ourselves to
results that highlight that collective emission can be notably
different from independent emission. The full exploitation of
the method presented here may need other numerical studies
on a larger parametric space on many other heterostructures.
These studies may help us to control exciton–plasmon cou-
plings and resulting emission using low concentrations of
even smaller metal particles, a regime that can certainly be
very different from such effects on independent emitters.

4. CONCLUSION
A method to evaluate characteristics of eigenstates of an
interacting set of n dipole emitters and other polarizable
matter of generalized geometries was presented. The role
of self-energy matrices in the estimation of their collective

eigenstates was described, and the required relations for de-
composition of their radiative and nonradiative parts were
also derived. Closed form relations to evaluate Green tensors
using the global matrices of Green dyads coupling entity pairs
in free-space (or a homogeneous background medium) were
produced. These relations were also shown to satisfy general
laws of physics such as a Lagrangian solution of the problem
and the optical theorem for many point emitters and other
polarizable bodies interacting among themselves. The pos-
sible modifications for special limiting cases were discussed
and an extension of this method to evaluate the collective
interactions with a surface is presented in Appendix B. More-
over, the significant effects of n coupled emitters interacting
with m polarizable bodies were highlighted using numerical
results. The heterostructures used in these numerical exam-
ples provided a concise view of the rich behavior of emission
possible in collective systems. This method of enumerating
eigenstates of emission and radiative properties in strongly
interacting emitter matter systems provides a new path to
deeper understanding of optical metamaterials.

APPENDIX A: PUSTOVIT–SHAHBAZYAN
MODEL FOR m INDEPENDENT METAL
PARTICLES
The self-energy matrix of an ensemble of dipole emitters in-
teracting with a single spherical metal particle was described
by Pustovit and Shahbazyan, and an analytical solution of the
green tensors was derived under long-wavelength approxima-
tion [10]. There, the phase of the oscillators was fixed while
the amplitudes were modified due to the common field, as
described by the self-energy matrix of the ensemble:

Σjk�ω� �
−2πq2ωo

mc2
ej ·G�rj ; rk;ω� · ek;

where Γr
o �

2 kq2ωo

3 mc2
and ω ≈ ωo: (A1)

The modified Green dyads coupling the dipole emitters
Pjej in the presence of a single spherical metal particle cen-
tered at rp were derived. They satisfy the following relations
where εp; εo and θ are the permittivity of metal, free space and
the step-function relating them, for a spherical particle of
radius R:

4πω2

c2

X
k

Gp�r; rk;ω� · ekpkeiϕk � E�r;ω�;

where

k2ε�r� ·Gp�r; rj;ω� − ∇ × ∇ ×Gp�r; rj;ω� � δ�r − rj�;
and ε�r� � εpθ�R − ‖r − rp‖� � ε0θ�‖r − rp‖ − R�: (A2)

The Green dyadic between the dipole emitters at rj ; rk, due
to all the metal particles not interacting among each other, can
then be derived by a sum of these modified Green dyads in the
presence of all the single metal particles at the locations rp.

G�rj ; rk;ω� � Go�rj ; rk;ω� �
X
p

Gp�rj ; rk;ω�; (A3)

and

M. Venkatapathi Vol. 31, No. 12 / December 2014 / J. Opt. Soc. Am. B 3161



Σjk �
3Γr

o

4 k3

�
ej · ek
r3jk

−

3�ej · rjk��ek · rjk�
r5jk

−

X
l

αlT
l
jk

�

−

iΓr
o

2
fej · ek − α1K

1
jk � jα1j2T1

jkg − δjk
iΓnr

o

2
; (A4)

where

Tl
jk �

X
p

4π
2l� 1

X�l

−l

�ej · ψ lm�rj − rp���ek · ψ lm�rk − rp��; and

Kl
jk �

X
p

4π
2l� 1

X�l

−l

�ej · ψ lm�rj − rp���ek · χlm�rk − rp��;

ψ lm�r� � ∇
�
Ylm�r�
rl�1

�
; χ lm�r� � ∇�rlY lm�r��: (A5)

Ylm�r� are the spherical harmonics and specifically, the dipole
mode components are given by

K1
jk �

X
p

1

‖rj − rp‖3

�
ej · ek −

3�ej · �rj − rp���ek · �rj − rp��
‖rj − rp‖2

�
;

T1
jk �

X
p

1
‖rk − rp‖3‖rj − rp‖3

×
�
ej · ek − � � � 3�ej · �rj − rp���ek · �rj − rp��

‖rj − rp‖2

−

3�ej · �rk − rp���ek · �rk − rp��
‖rk − rp‖2

� � � �

9�ek · �rk − rp���ej · �rj − rp����rk − rp� · �rj − rp��
‖rj − rp‖2‖rk − rp‖2

�
:

(A6)

The self-energy matrix of the ensemble of emitters can
be decomposed into its radiative and nonradiative decay
parts as

Γr
jk � Γr

ofej · ek − α01K
1
jk � jα1j2T1

jkg and

Γnr
jk � 3Γr

o

2 k3

X
l

α00l T
l
jk − δjk

iΓnr
o

2
; (A7)

where αl � α0l � iα00l :
The l-pole polarizability of the spherical metal particle is

given by

αl�ω� � a2l�1

�
ε�ω; rp� − ε

ε�ω; rp� � �1� 1∕l�ε

�
; (A8)

where a is radius of particle at rp.

APPENDIX B: NOTE ON SURFACE
INTERACTIONS
The interaction of emitters and other bodies with a substrate/
surface has been difficult to study because separable co-
ordinates for analytical solutions do not exist, and Fresnel
coefficients for near-field radiating sources do not have
closed form relations that are easily computable [35–38].
An expansion of the fields in Cartesian coordinates with
the surface represented by a coordinate plane is the more
intuitive approach, though it involves integration over two

dimensions [11]. Analytical forms of these solutions using ad-
ditional series expansions were also provided recently [39].
A more convenient approach is to numerically calculate the
components of a radiating dipole in the near field of the sur-
face using the Sommerfeld identity for a spherical wave in free
space as in Eq. (A9):

eikr

4πr
� 1

4π

Z
∞

0

kρ

kz
Jo�ρkρ� exp�−ikzjzj�dkρ: (A9)

The field from a radiating dipole over a surface can also be
decomposed into cylindrical components parallel to the sur-
face (ρ axis) and a plane wave perpendicular to the surface (z
axis), similarly. Here, Sommerfeld relations with reflection co-
efficients for the perpendicular plane waves interacting with
the surface are numerically converged to as in Eq. (A10). This
requires the reflection coefficients R as a quadratic function of
kρ [40,41]. For any two dipoles k and j at any distance z from
the surface, and ρ from each other along the surface, the in-
tegral in Eq. (A10) has to converge over the complex domain
of wave vector magnitudes kρ and involves appropriate
branch cuts. The reflected component of the electric field
due to a radiating dipole in the near field of a surface can then
be represented as in Eq. (A11) [41,42]:

eikr

4πr
� 1

4π

Z
∞

0
Jo�ρkρ� · R�kρ� · exp�−ikzjzj�dkρ; (A10)

Esurface;j �
XN
k�1

�
S̄jk �

k2s�k2o − k2s�
ε0�k2o � k2s�

GI
o�rj ; rk;ω�

�
· Pk; (A11)

where S̄jk is a 3 × 3 matrix containing Sommerfeld integral
terms of the field for dipoles k and j, and ko and ks are the
wave numbers in free-space/homogeneous background and
the surface, respectively. We do not proceed further into
the aspects of numerical calculation of S̄jk in this paper,
and these methods are described in the above mentioned
works. For a surface at z � 0, with its normal in the z direc-
tion, the image dyadic Green’s function matrix is defined as

GI
o�rj ; rk;ω� � −Go�rj ; rk;ω� · IR; (A12)

where IR is the reflection dyad IR � exex � eyey − ezez.
The surface-modified Green dyads of the background

medium Gs
o�rj ; rk;ω� can be introduced into Eq. (6) in place

ofGo�rj ; rk;ω� for computing the self-energy matrices of a het-
erostructure on a surface, and they are

Gs
o�rj ; rk;ω� � S̄jk �Go�rj ; rk;ω� ·

�
I −

k2s�k2o − k2s�
ε0�k2o � k2s�

IR

�
:

(A13)
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